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PREFACE

This document provides guidance to the U.S. Environmental Protection Agency Regions concerning how
the Agency intends to exercise its discretion in implementing one aspect of the CERCLA remedy selection
process. The guidance is designed to implement national policy on these issues.

Some of the statutory provisions described in this document contain legally binding requirements. However,
this document does not substitute for those provisions or regulations, nor is it a regulation itself. Thus, it
cannot impose legally binding requirements on EPA, States, or the regulated community, and may not apply
to a particular situation based upon the circumstances. Any decisions regarding a particular remedy selection
decision will be made based on the statute and regulations, and EPA decision makers retain the discretion
to adopt approaches on a case-by-case basis that differ from this guidance where appropriate. EPA may
change this guidance in the future.
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CHAPTER 1

INTRODUCTION

The U.S. Environmental Protection Agency (EPA)
developed this document to assist Superfund
remedial project managers (RPMs) and risk asses-
sors when implementing Superfund baseline risk
assessments and the remedy selection process. This
document recommends statistical methods for
characterizing background concentrations of chemi-
cals in soil for the purpose of evaluating risks and
making remedial decisions.

This document supplements Agency guidance
included in the Risk Assessment Guidance for
Superfund Vol. I, Human Health Evaluation Manual
(Part A)1 (RAGS). RAGS contains useful guidance
on background issues that the reader should also
consult:

� Sampling needs (Sections 4.4 and 4.6)
� Statistical methods (Section 4.4)
� Exposure assessment (Section 6.5), and,
� Risk characterization (Section 8.6).

This document draws upon many other publications
and statistical references, which are cited in Chap-
ters 2 through 5. In general, background may play a
role in the Superfund process when:

� Determining whether a release falls within the
limitation contained in Section 104(a)(3)(A) of
the Comprehensive Environmental Response,
Compensation, and Liability Act (CERCLA),
which addresses naturally occurring substances
in their unaltered form from a location where
they are naturally found2;

� Developing remedial goals3; and

� Communicating cumulative risks associated
with the Superfund site.

As stated in RAGS, a statistically significant differ-
ence between background samples and site-related
contamination should not, by itself, trigger a cleanup
action. Risk assessment methods should be applied
to ascertain the significance of the chemical concen-
trations. A national policy is being developed to
clarify the role of background characterization
results in the Superfund risk assessment and remedy
selection process. When completed, the policy will
be included in this guidance.

1.1 Application of Guidance

Not every Superfund site investigation will need to
characterize background chemicals. A background
evaluation usually is considered when certain
contaminants that pose risks are believed to be
attributable to background. The need for background
characterization and the required level of effort
should be determined on a site-specific basis. The
site team should consider whether collecting back-
ground samples is necessary (Chapter 2); when,
where, and how to collect background samples
(Chapter 3); and how to evaluate the data (Chapters
4 and 5).

1.2 Goals

The general goals of this guidance are to:

� Provide a practical guide for characterizing
background concentrations at Superfund sites;
and
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� Present sound options for evaluating back-
ground data sets in comparison to site contam-
ination data.

1.3 Scope of Guidance

This guidance pertains to the evaluation of chemical
contamination in soil at Superfund sites. This
guidance may be updated in the future to address
non-soil media. Non-soil media are dynamic and
influenced by upstream or upgradient sources. Such
media—air, groundwater, surface water, and
sediments—typically require additional analyses of
release and transport, involve more complex spatial
and temporal sampling strategies, and require
different ways of combining and analyzing data.4 

Because this guidance pertains to background
chemicals, the user should consult the available
Agency guidances and policies when dealing with
sites with radioactive contaminants. Certain types of
Superfund sites, such as mining or dioxin-contam-
inated sites, may require consideration of specific
Agency policies and regulations. Therefore, this
guidance should be applied on a case-by-case basis,
with consideration of Agency statutes, regulations,
and policies.

1.4 Intended Audience

The intended audience of this guidance is Superfund
staff which includes risk assessors, RPMs, and
decision makers. To the extent practicable, this
guidance may also be applicable to sites addressed

under removal actions, especially non-time-critical
removal actions, and Resource Conservation and
Recovery Act (RCRA) corrective actions. 

1.5 Definition of Background

For the purposes of this guidance, background
samples are those collected at or near the hazardous
waste site in areas not influenced by the Superfund
site contamination or other nearby Superfund sites.
Background soil samples should have the same
basic characteristics as the site sample. 

Background substances may be natural or man-
made. An example of a naturally occurring sub-
stance is arsenic present in soil as a result of natural
geologic processes. In some geographic areas, natur-
ally occurring substances may be ubiquitous. Man-
made or anthropogenic substances are present in the
environment because of human activities. In some
geographic areas, man-made substances may be
ubiquitous in soil, such as dioxin and pesticides.
Some constituents in background soil samples could
exist as a result of both natural and man-made
conditions (such as naturally occurring arsenic and
arsenic from pesticide applications or smelting
operations).

Superfund site activity (such as waste disposal
practices) may cause naturally occurring substances
to be released into other environmental media or
chemically transformed. The concentrations of the
released naturally occurring substance may not be
considered as representative of natural background
according to CERCLA 104(a)(3)(A).
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1. U.S. Environmental Protection Agency (EPA). 1989. Risk Assessment Guidance for Superfund Vol. I,
Human Health Evaluation Manual (Part A). Office of Emergency and Remedial Response, Washington,
DC. EPA 540-1-89-002. Hereafter referred to as “RAGS.”

2. CERCLA 104(a)(3)(A) restricts the authority to take an action in response to the release or threat of
release of a “naturally occurring substance in its unaltered form or altered solely through naturally
occurring processes or phenomena, from a location where it is naturally found.” 

3. The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) (40 CFR Part 300) is the
primary regulation that implements CERCLA. The preamble to the NCP discusses the use of background
data for setting cleanup levels for constituents at Superfund sites.

“...In some cases, background levels are not necessarily protective of human health, such as in urban or
industrial areas; in other cases, cleaning up to background levels may not be necessary to achieve
protection of human health because the background level for a particular contaminant may be close to
zero, as in pristine areas” (55 FR 8717-8718).

The preamble to the NCP also identifies background as a technical factor to consider when determining an
appropriate remedial level:

“Preliminary remediation goals...may be revised to a different risk level within the acceptable risk range
based on the consideration of appropriate factors including, but not limited to: exposure factors,
uncertainty factors, and technical factors...Technical factors may include...background levels of
contaminants...”(55 FR 8717).

4. RAGS Sections 4.5 and 6.5.

CHAPTER NOTES
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Exhibit 2.1 Determining the need for background
sampling.

CHAPTER 2

DETERMINING THE NEED FOR
BACKGROUND SAMPLING DATA

A first step in determining the need for background
sampling data is gathering and evaluating all of the
available data. Some information gathered during
the Preliminary Assessment/Site Investigation (PA/
SI) may provide data on suspected background
chemicals. The SI usually provides the first oppor-
tunity to collect some background samples. Data
collected and assessed for the hazard ranking system
(HRS) process may include both site-related con-
taminants and off-site (or estimated background)
substances. These data are generally limited in
quantity and sample location. The locations of all
data need to be identified and reported when these
data are considered during the remedial investiga-
tion. The general types of information to consider
when determining the need for background sampling
are listed in Exhibit 2.1.

Information from preliminary site studies or pub-
lished sources (regional or local data from the state
or U.S. Geological Survey) may be useful for identi-
fying local soil, water, and air quality charac-
teristics.1 Data from these resources may be useful
for qualitative analyses of regional conditions.
However, usually they are not sufficient to assess
site-specific conditions in a quantitative manner.
The EPA site team should determine the utility of
these data.

After compiling and considering the relevant infor-
mation, the site team should determine if the data
are sufficient for the risk assessment and risk
management decisions, or if additional site-specific
data should be collected to characterize background.

2.1 When Background Samples Are
Not Needed

If the sample quantity, location, and quality of

Background Sampling Considerations

� Natural variability of metals in soil
� Operational practices
� Waste type
� Contaminant mobility
� Soil type(s)
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1. U.S. Environmental Protection Agency (EPA). October 1988. Guidance for Conducting Remedial
Investigations and Feasibility Studies Under CERCLA; Interim Final. (NTIS PB89-184626, EPA 540-G-
89-004, EPA 9355.3-01). 

existing data can be used to characterize background
concentrations and compare them to site data, then
the team may not need additional samples. In some
cases, the team might determine that background
concentration levels are irrelevant to the decision-
making process. For example, if the team is
addressing a chemical release whose constituents
are known and not naturally occurring, background
data would not be relevant. In other cases, suspected
background constituents may not exceed risk-based
cleanup goals, and, therefore, further background
analysis would not be relevant.

2.2 When Background Samples Are
Needed

In some cases, the existing data may be inadequate
to characterize background. The reasons for this
include, but are not limited to, the following:

� Insufficient number of samples to perform the
desired statistical analysis or to perform the
tests with the desired level of statistical power;

� Inappropriate background sample locations
(such as those affected by another contamina-
tion source, or in soil types that do not reflect
on-site soil types of interest);

� Unknown or suspect data quality;

� Alterations in the land since the samples were
collected (such as by filling, excavation, or
introduction of new anthropogenic sources); and

� Gaps in the available data (certain chemicals
were excluded from the sample analyses, or
certain soil types were not collected).

CHAPTER NOTE
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CHAPTER 3

DEVELOP THE SAMPLING AND ANALYSIS PLAN

Data Quality Objectives (DQOs) should be used
when developing sampling and analysis plans
(SAPs) to ensure that reliable data are acquired.
RAGS (Chapter 4) describes the role of the DQO
process in general terms. The process is outlined
here for purposes of developing background
sampling plans. For further details, consult Section
6 of Guidance for the Data Quality Objectives
Process1 and Guidance for Data Quality Assess-
ment: Practical Methods for Data Analysis.2

The DQO process is the starting point for many
decisions that shape the sampling plan. It involves a
series of steps for making optimal decisions based
on limited data. A careful statement of the DQOs for
a study will clarify the study objectives, define the
most appropriate type of data to collect, determine
the most appropriate conditions for collecting the
data, and specify limits on decision errors. Use of
the DQO process ensures that the type, quantity, and
quality of environmental data used in decision
making will be appropriate for the intended applica-
tion. It improves efficiency by eliminating unneces-
sary, duplicative, or overly precise data. The DQO
process provides a systematic process for defining
a tolerable level for decision errors. The DQO
process and decision parameters establish the
quantity and quality of data needed.

3.1 DQO Steps for Characterizing
Background

Each of the seven steps of the DQO process answers
a question phrased in terms of background issues.
The examples below should be modified to fit the
site of concern. A statistician should be consulted as
needed.

Seven Steps in the Data Quality Objectives Process

1. State the Problem
2. Identify the Decision
3. Identify Inputs to the Decision
4. Define Boundaries of Study
5. Develop a Decision Rule
6. Specify Limits on Decision Errors
7. Optimize the Design for Obtaining Data

Step 1. State the Problem: Example: Are there
differences between the concentrations of a con-
taminant (risk driver) that are found on site and
those concentrations that are found off-site
(background)?

Tasks include:

� Identifying the resources available to resolve the
problem, including scoping team; and

� Developing or refining the comprehensive con-
ceptual site model.

Step 2. Identify the Decision: Example: Are the
chemical(s) associated with a site-related source or
background?

Tasks include:

� Identifying the chemicals to analyze; and
� Determining if these chemicals are expected to

occur in reference areas selected to reflect
background conditions.

Step 3. Identify Inputs into the Decision: Exam-
ple: What kinds of data are needed? What kinds of
data are available? 
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Definitions

û (delta): The true difference between the concentration of chemical X in contaminated areas and the
background concentration of chemical X. Delta is an unknown parameter which describes the true state of
nature. Hypotheses about its value are evaluated using statistical hypothesis tests.

S (substantial difference): The largest difference û that is acceptable based on risk assessment. S is the
action level. If û exceeds S, the site requires further evaluation and possible remediation. S is not related
to the number of samples or their values.

MDD (minimum detectable difference): The smallest difference which the data and statistical test can
resolve. The MDD depends on sample-to-sample variability, the number of samples, and the power of the
statistical test. The MDD is a property of the survey design.

Gray Region: A range of values of û where the statistical test will yield inconclusive results. The width of
the gray region is equal to the MDD for the test. The location of the gray region depends on the type of
statistical test selected.

Tasks include identifying:

� Which chemicals need to be analyzed;
� Which soil types and depths need to be

sampled;
� Which comparison tests are likely to be used

(see Chapter 5 for details about comparison
tests);

� What coefficient of variation is expected for the
data (based on previous samples if possible);

� What preliminary remediation goals (PRGs) or
applicable or relevant and appropriate require-
ments (ARARs) may need to be met; and

� What are the desired power and confidence
levels?

Decision outputs for background characterizations
are discussed in detail in Chapter 5.

Step 4. Define Boundaries of the Study: Example:
What are the spatial and temporal aspects of the
environmental media that the data must represent to
support the decision?

Tasks include:

� Defining the geographic areas for field investi-
gation;

� Defining the characteristics of the soil data or

population of interest;
� Dividing the soil data population of interest into

strata having relatively homogeneous charac-
teristics;

� Determining the timeframe to which the
decision applies; and

� Identifying practical constraints that may hinder
sample collection.

Step 5. Develop a Decision Rule: Example: If the
mean concentration in contaminated areas exceeds
the mean background concentration, then the
chemical will be treated as site-related. Otherwise,
if the mean concentration in contaminated areas
does not exceed the background mean, the chemical
will be treated as coming from the same population
as background.

Tasks include:

� Choosing the null hypothesis, H0;
� Specifying the alternative hypothesis, HA;
� Specifying the gray region for the hypothesis

test; and
� Determining the level of a substantial difference

above background, S.

Hypothesis testing is an approach that helps the
decision maker through the analysis of data. Chapter
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5 discusses the application of hypothesis testing at
Superfund sites. General information on hypothesis
testing is provided in Section 3.2.

Step 6. Specify the Limits on Decision Errors: 
Example: What level of uncertainty is acceptable for
this decision? (For definitions, see Sections 3.2 on
Hypothesis Testing and 3.3 on Errors and
Confidence, and Exhibits 3.1 and 3.2.):
� Test form 1—The gray region extends from a

difference of û = 0 on the left to û = MDD on
the right (see box for definitions). Acceptable
limits on decision errors are . at the left edge of
the gray region, and � at the right edge. 

� Test form 2—The gray region extends from a
difference of û = (S - MDD) on the left to û = S
on the right. The acceptable limits on decision
errors are . at the right edge of the gray region,
and � at the left edge. 

Tasks include: 

� Determining the possible range of the parameter
of interest (û);

� Specifying both types of decision errors (Type
I and Type II—see Section 3.2);

� Identifying the potential consequences of each
type of error, specifying a range of possible
values for û (the gray area—see Exhibits 3.1
and 3.2) where consequences of decision errors
are relatively minor; and

� Selecting the limits on decision errors (. and �)
to reflect the decision-maker’s concern about
the relative consequences for each type of
decision error (Section 3.3). 

Step 7. Optimize the Sampling Design: Example:
What is the most resource-effective sampling and
analysis design for generating data that are
expected to satisfy the DQOs?
Tasks include:

� Reviewing the DQO outputs and existing
environmental data;

� Developing general sampling and analysis
design alternatives;

� Verifying that DQOs are satisfied for each

design alternative;
� Selecting the most resource-effective design

that satisfies all of the DQOs; and 
� Documenting the operational details and theor-

etical assumptions of the selected design in the
sampling and analysis plan.

More information may be required to make a
decision. If the required sample size is too large, it
may be necessary to modify the original DQO
parameters. To reduce survey cost while maximizing
utility of the available resources, one or more of the
constraints used to develop the survey design may
be relaxed. A discussion on adjusting sample size is
provided in Section 3.4.

3.2 Hypothesis Testing

The decision rule (DQO Step 5) involves developing
a logical “if...then...” statement that defines the
conditions that would choose among alternative
actions. The first step in developing the decision
rule is to transform the problem into statistical
terminology by developing a null hypothesis and an
alternative hypothesis. These hypotheses form the
two alternative decisions in the decision rule.

Action Levels and Background
In comparisons with background, the parameter of
interest is symbolized by the Greek letter delta
(û), the amount by which the distribution of
concentrations in contaminated areas exceeds the
background distribution. As indicated in the
“definitions” box on the next page, û is an
unknown parameter that represents the true state
of nature. Although it is impossible to know û
exactly, statistical tests are used to evaluate
hypotheses made concerning the possible values of
û. The statistical tests are used to reject or not
reject hypotheses about û based on test statistics
computed from the sample data.

The decision rule requires a parameter of interest
(such as mean, median, maximum) and specification
of an action level for the decision.
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Null and Alternative Hypotheses 

In statistics, as in science, a “hypothesis” is a presumption of fact (true or false) that can be tested.
Conventionally, hypotheses are stated in such a way that we know what to expect if they are true. For this
manual (as in RAGS), this is referred to as the “research hypothesis.” However, in order to “prove” the
desired hypothesis, it is commonly easier to try to disprove it (that is, the hypothesis is not true). This
assumption to be tested is called the null hypothesis (H0)—if the null hypothesis is true, then the initial
presumption is not true. If we want to show that site concentration exceeds background, we formulate a
null hypothesis that their concentrations are the same. A null hypothesis, then, is any testable presumption
set up to be disproved. 

An alternative hypothesis (HA) is the logical opposite of the null hypothesis: if H0 is true, HA is false, and
vice-versa. Consequently, the alternative hypothesis is usually logically the same as the investigator’s
research hypothesis. However, null and alternative hypotheses may need to be formulated to consider both
tails of the curve if it matters whether the statistic of interest is greater than or less than the true mean, not
just different from the true mean. Since HA is the conclusion you draw if you have sufficient evidence to
reject H0, it is usually written as an inequality (e.g., µs > µb; µs < µb; µs g µb).

For background comparisons, the parameter of
interest is û, the difference between the mean
concentration in contaminated areas and the mean
concentration in background areas. The action level
for background comparisons is the largest value of
the difference in means that is acceptable to the
decision maker. In this guidance, the action level for
the difference in means is defined as a substantial
difference (S), which may be zero or a positive
value based on risk assessment, applicable regula-
tion, or guidance. In some cases, the largest accept-
able value for the difference in means may be S = 0.

Estimates of û are obtained by measuring contamin-
ant concentrations in contaminated areas and in
background areas. For example, one estimate of the
mean concentration in contaminated areas is the
simple arithmetic average of the measurements from
these areas. An estimate of the mean background
concentration is similarly calculated. An estimate of
the difference in means (û) is obtained by subtrac-
ting the mean background concentration from mean
concentration in contaminated areas. In most cases
of interest, the estimate of û will be a positive
number. If there is little or no contamination on the
site, then the estimate for û may be near zero or
slightly negative. Note that the estimated value for
û calculated by this simple procedure (or by any

more complicated procedure) is only an approxima-
tion of the true value of û. Hence, decisions based
on any estimated value for û may be incorrect.

Using the DQO process, the decision maker must
choose between two courses of action, one associa-
ted with the null hypothesis and one associated with
the alternative hypothesis. Adopting the DQO
approach and hypothesis tests can control the
probability of making decision errors. Hypothesis
testing is a quantitative method to determine
whether a specific statement concerning û (called
the null hypothesis) can be rejected by examining
the data, or not. Decisions concerning the true value
of û reduce to a choice between “yes” or “no.”
When viewed in this way, two types of incorrect
decisions, or decision errors, may occur: 

� Incorrectly deciding that the answer is “yes”
when the true answer is “no;” and 

� Incorrectly deciding the answer is “no” when
the true answer is “yes.” 

While the possibility of decision errors can never be
totally eliminated, it can be controlled. To control
decision errors, it is necessary to control the
uncertainty in the estimate of û. Uncertainty arises
from three sources:



Page 3-5

U.S. EPA External Review Draft — June 2001

� Sampling error;
� Measurement error; and
� Natural variability.

The decision maker has some control of the first two
sources of uncertainty. Sampling error may be
controlled by collecting a larger number of samples.
Larger samples lead to fewer decision errors. Use of
more precise measurement techniques or duplicate
measurements can reduce measurement error, thus
reducing the likelihood of a decision error. How-
ever, the third source of uncertainty is more difficult
to control. Natural variability arises from the uneven
distribution of contamination on the site and in
background areas. Natural variability is measured by
the true standard deviation (1) of the distribution of
contamination. A larger value of 1 indicates that a
larger number of measurements will be needed to
achieve a desired limit on decision errors. It is
important that overly optimistic estimates for 1 be
avoided because this may result in a design that fails
to generate data with sufficient power for the
decision.

The DQO process provides a formal procedure to
quantify the decision maker’s acceptable limits for
decision errors. The decision maker’s limits on
decision errors are used to establish performance
goals for data collection. The goal of the DQO
process is to develop a data collection plan that
reduces the chance of making decision errors of
both types. The first step in the DQO process
includes specifying the gray region for the test. The
gray region is a range of possible values of û, where
the consequences of making a decision error are
relatively minor. 

Any useful statistical test has a low probability of
reflecting a substantial difference when the site and
background distributions are identical (false posi-
tive) but has a high probability of reflecting a
substantial difference when the distribution of
contamination in contaminated areas greatly exceeds
the background distribution. In the gray region
between these two extremes, the statistical test has
relatively poor performance. When the test proce-
dure is applied to a site with a true concentration

distribution in the gray region, the test may indicate
that the site exceeds background, or may indicate
that the site does not exceed background, depending
on random fluctuations in the sample data. 

It is necessary to specify a gray region for the test
because the decision may be “too close to call” due
to uncertainty in the estimate of û. The second step
in the DQO procedure for specifying limits on
decision errors is to assign upper bounds on the
decision error rates for values of û above and below
the gray region. These bounds limit the probability
of occurrence of decision errors. 

The exact definition of the gray region is determined
by the type of hypothesis test that is selected by the
decision maker (See Exhibits 3.1 and 3.2 in Section
3.4). In general, the gray region for û is to the right
of the origin (û = 0) and bounded from above by the
substantial difference (û = S). Additional guidance
on specifying a gray region for the test is available
in Guidance for the Data Quality Objectives
Process.2 The expected outputs of the DQO process
are the gray region and the decision error limits
based on the consequences of making an incorrect
decision. 

The width of the gray region is called the “minimum
detectable difference” for the statistical test, indica-
ting that differences smaller than the MDD cannot
be detected reliably by the test. If the test is used to
determine if concentrations in the contaminated area
exceed background concentrations by more than S,
it is necessary to ensure that MDD for the test is less
than S. In the planning stage, this requirement is met
by designing a sampling plan with sufficient power
to detect differences as small as S. If the data were
collected without the benefit of a sampling plan,
retrospective calculation of the power of the test
may be necessary before using the data to make a
decision.

In the planning stage, the absolute size of the MDD
is of less importance than the ratio of the MDD to
the natural variability of the contaminant concentra-
tions in the contaminated area. This ratio is termed
the “relative difference” and defined as MDD/1,
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where 1 is the standard deviation of the distribution
of contamination in contaminated areas. The relative
difference expresses the power of resolution of the
statistical test in units of uncertainty. Relative
differences of less than one standard deviation
(MDD/1 < 1) are difficult to resolve unless a large
number of measurements are available. Relative
differences of more than three standard deviations
(MDD/1 > 3) are easier to resolve. The goal for the
data collection plan should be to achieve values of
MDD/1 between one and three. The required
number of samples increases dramatically when
MDD/1 is smaller than one. Conversely, little
advantage is gained by making MDD/1 larger than
three. If MDD/1 is greater than three, additional
measurement precision is available at minimal cost
by making the width of the gray region (MDD)
smaller. 

The number of measurements required to achieve
the specified decision error rates has a strong
inverse relationship with the value of MDD/1. The
cost of the data collection plan should be examined
quantitatively for a range of possible values of the
MDD before selecting a final value. A tradeoff
exists between cost (number of samples required)
and benefit (better power of resolution of the test).
The tradeoff analysis should begin with analysis of
the choice MDD = S, where S is a substantial
difference. If the relative substantial difference (S/1)
exceeds three, then a reasonably small number of
samples are required for this minimally acceptable
test design. Additional measurement precision is
available at minimal cost by choosing MDD < S. A
binary search procedure would indicate the choice
of MDD = S/2 as the next trial in the cost tradeoff
comparison. If S/1 is between one and three, then
selecting MDD = S is a reasonable alternative. If
S/1 < 1, then selecting MDD = S is the most cost-
effective choice consistent with the requirement that
MDD � S.

The MDD, in conjunction with the values selected
for tolerable decision error rates, determines the cost
of the survey design produced by the DQO process
and the success of the survey in determining which
areas present unacceptable risks. From a risk

assessment perspective, selection of the proper
width of the gray region is one of the most difficult
tasks in the DQO process. One goal of the DQO
process is to make the MDD as small as possible
within the goals and resources of the cleanup effort.

Two forms of the statistical hypothesis test are
useful for comparisons with background. The null
hypothesis in the first form of the test is that the site
is indistinguishable from background. The null
hypothesis in the second form of the test is that the
site exceeds background by a substantial difference.
RAGS3 provides guidance for the first form of the
background hypothesis test. Both forms are
described in the next section. 

3.2.1 Background Test Form 1

The null hypothesis for background comparisons,
“the concentration in contaminated areas does not
exceed background concentration,” is formulated for
the express purpose of being rejected:

� The null hypothesis (H0). The mean contaminant
concentration in samples from contaminated
areas is less than or equal to the mean concen-
tration of the background data (û < 0).4

� The alternative hypothesis (HA). The mean
contaminant concentration in samples from
contaminated areas is significantly higher than
the mean of the background data (û > 0). 

When using this form of hypothesis test, the data
must provide statistically significant evidence that
the null hypothesis is false—the site does exceed
background. Otherwise, the null hypothesis cannot
be rejected based on the available data, and the
concentrations found in contaminated areas are
considered equivalent to background.

An easy way to think about the decision errors that
may occur using Background Test Form 1 is to think
about the criminal justice system in this country and
consider what a jury must weigh to determine guilt.
The only choices are “guilty” and “not guilty.” A
person on trial is presumed “innocent until proven
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guilty.” When the evidence (data) is clearly not
consistent with the presumption of innocence, a jury
reaches a “guilty” verdict. Otherwise the verdict of
“not guilty” is rendered when the evidence is not
sufficient to reject the presumption of innocence. A
jury does not have to be convinced that the defen-
dant is innocent to reach a verdict of “not guilty.”
Similarly, when using Background Test Form 1, the
null hypothesis is presumed true until proven false.

Two serious problems arise when using Background
Tests Form 1. One type of problem arises when
there is a very large amount of data. In this case, the
MDD for the test will be very small, and the test
will almost always reject the null hypothesis. Even
very small differences between the site and back-
ground mean concentrations can be resolved in this
case. If the site exceeds background by more than an
infinitesimal amount, there is a 100 percent chance
that the null hypothesis will be rejected if a
sufficiently large number of samples is taken. There-
fore, the sample size should exceed the minimum
number of samples required to give the test
sufficient power.

A second type of problem may arise in the use of
Background Test Form 1 when insufficient data are
available. This may occur, for example, when the
on-site or background variability was underestima-
ted in the design phase. In this case, the statistical
test is unlikely to reject the null hypothesis due to
the lack of sufficient power. When using Back-
ground Test Form 1, it is always best to conduct a
retrospective power analysis to ensure that the
power of the test was adequate to detect contamina-
ted areas that exceed background by more than the
MDD. A simple way to do this is to recompute the
required sample size using the sample variance in
place of the estimated variance that was used to
determine the required sample size in the planning
phase. If the actual sample size is greater than this
post-calculated size, then it is likely that the test has
adequate power.5 If the retrospective analysis
indicates that adequate power was not obtained, it
may be necessary to collect more samples. Hence, if
large uncertainties exist concerning the variability of
the contaminant concentration in contaminated

areas, Background Test Form 1 may lead to
inconclusive results.

Detailed information on the application and
characteristics of Background Test Form 1 is avail-
able in the document series Statistical Methods for
Evaluating the Attainment of Cleanup Standards.
Volume 3, subtitled Reference-Based Standards for
Soils and Solid Media6 contains detailed procedures
for comparing site measurements with background
reference area data using parametric and nonpara-
metric tests based on Background Test Form 1. 

3.2.2 Background Test Form 2

An alternative form of hypotheses test for compar-
ing two distributions is presented in Guidance for
the Data Quality Objectives Process, EPA QA/G-4.1

When adapted to the background problem, the null
hypothesis, “the concentration in contaminated areas
does exceed background concentration,” again is
formulated for the express purpose of being
rejected:

� The null hypothesis (H0): The mean contaminant
concentration in contaminated areas exceeds
background by more than a substantial differ-
ence S (û > S).7

� The alternative hypothesis (HA): The mean
contaminant concentration in contaminated
areas does not exceed background by more than
a substantial difference S (û < S).

Here, the substantial difference is an action level
that reflects a substantial and undesired increase in
risk over background risks. Although there is no
explicit use of the quantity S in the statement of the
hypotheses used in Background Test Form 1, an
estimate of S is important for determining an upper
limit for the MDD for Background Test Form 2, as
discussed below. Issues affecting the determination
of site-specific values for a substantial difference
are discussed in more detail in the Appendix at the
end of this guidance.

Detailed information on the application and charac-
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Hypothesis Testing: Type I and Type II Errors

Decision Based
on Sample Data

Actual Site Condition

H0 is True H0 is not True

H0 is not rejected Correct Decision: (1 - .)
Type II Error:

False Negative (�)

H0 is rejected
Type I Error:

False Positive (.)
Correct Decision: (1 - �)

teristics of parametric statistical tests based on
Background Test Form 2 is available in Volumes 1
and 2 of the EPA document series Statistical
Methods for Evaluating the Attainment of Cleanup
Standards.8

3.2.3 Selecting a Background Test Form

When comparing Background Test Forms 1 and 2,
it is important to distinguish between the selection
of the null hypothesis, which is a burden-of-proof
issue, and the selection of the appropriate level of
concern, which involves determination of a quantita-
tive value for a substantial difference based on risk
assessment or an action level.

Background Test Form 1 uses a conservative action
level of û = 0, but relaxes the burden of proof by
selecting the null hypothesis that the contaminant
concentration in contaminated areas is indistinguish-
able from background. Background Test Form 2
requires a stricter burden of proof, but relaxes the
action level from 0 to S. Section 5.4 includes further
discussion of how to choose between Test Forms 1
and 2, and gives additional guidance for setting up
the hypotheses.

Regardless of the choice of hypothesis, an incorrect
conclusion could be drawn from the data analysis
using either form of the test. To account for this
inherent uncertainty, one must specify the limits on
the Type I and Type II decision errors. This task is
addressed in Step 6 of the DQO process and
described in the following section.

3.3 Errors Tests and Confidence
Levels

A key step in developing a sampling and analysis
plan is to establish the level of precision required of
the data.1 Whether the null hypothesis (Section 3.2)
will be rejected or not depends on the results of the
sampling. Due to the uncertainties in the data,
decisions made using the test will be subject to
errors. Decisions need to be made about the width of
the gray region and degree of decision error that is
acceptable. These topics are discussed below and in
more detail in Chapter 5. There are two ways to err
when analyzing data (see box above): 

� Type I Error: Based on the data observed, the
test may reject the null hypothesis when in fact
the null hypothesis is true (a false positive).
This is a Type I error. The probability of
making a Type I error is . (alpha); and

� Type II Error: On the other hand, the test may
fail to reject the null hypothesis when the null
hypothesis is in fact false (a false negative).
This is a Type II error. The probability of
making a Type II error is � (beta).

The error tolerance associated with hypothesis
testing is defined by two key parameters—confi-
dence level and power (see box on next page). These
parameters are closely related to the two error
probabilities, . and �.

� Confidence level (1 - .): The confidence level
for a statistical test is defined as one hundred
percent minus alpha. As the confidence level is
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Interpretation of the Statistical Measures

Background Test Form 1

Confidence level = 80%: In at least 80 out of 100 cases, site-related chemical concentrations would be
correctly identified as being no different (statistically) from background concentrations, while in at most
20 out of 100 cases, site-related concentrations would be incorrectly identified as being greater than back-
ground concentrations.

Power = 90%: In 90 out of 100 cases, site-related contaminants would be correctly identified as being
greater than background concentrations, while in 10 out of 100 cases, site-related concentrations would
be incorrectly identified as being less than or equal to background concentrations.

Background Test Form 2

Confidence level = 90%: In at least 90 out of 100 cases, site-related concentrations would be correctly
identified as exceeding background concentrations by more than S, while in at most 10 out of 100 cases,
site-related concentrations would be incorrectly identified as not exceeding background concentrations
by more than S.

Power = 80%: In at least 80 out of 100 cases, site-related concentrations would be correctly identified as
not exceeding background concentrations by more than S, while in at most 20 out of 100 cases, site-related
concentrations would be incorrectly identified as exceeding background concentrations by more than S.

lowered (or alternatively, as . is increased), the
likelihood of committing a Type I error
increases.

� Power (1 - �): The power of a statistical test is
defined as one hundred percent minus beta. As
the power is lowered (or alternatively, as � is
increased), the likelihood of committing a Type
II error increases.

Although a range of values can be selected for these
two parameters, as the demand for precision
increases, the number of samples and the cost will
generally also increase. 

Because there is an inherent tradeoff between the
probability of committing a Type I or Type II error,
a simultaneous reduction in both types can only
occur by increasing the number of samples. If the
probability of committing a false positive is reduced
by increasing the level of confidence of the test (in
other words, by decreasing .) the probability of

committing a false negative is increased because the
power of the test is reduced (increasing �).

For the purposes of this guidance, minimum recom-
mended performance measures are:

� For Background Test Form 1, confidence level
at least 80% (. = 20%) and power at least 90%
(� = 10%)9

� For Background Test Form 2, confidence level
at least 90% (. = 10%) and power at least 80%
(� = 20%)

When using Background Test Form 1, a Type I error
(false positive) is less serious than a Type II error
(false negative). This approach favors the protection
of human health and the environment. To ensure
that there is a low probability of Type II errors, a
Form 1 statistical test must have adequate power at
the right edge of the gray region.
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Exhibit 3.1 Test performance plot: site is
indistinguishable from background.

When Background Test Form 2 is used, a Type II
error is preferable to committing a Type I error. This
approach favors the protection of human health and
the environment. The choice of hypotheses used in
Background Test Form 2 is designed to be protec-
tive of human health and the environment by
requiring that the data contain evidence of no sub-
stantial contamination. This approach may be
contrasted to the "innocent until proven guilty”
approach used in Background Test Form 1. 

3.4 Test Performance Plots

During the scoping stage for the development of the
sampling plan, the interrelationships among the
decision parameters can be visualized using a test
performance plot. The test performance plot is a
graph that displays the combined effects of the
decision error rates, the gray area for the decision-
making process, and the level of a substantial
difference between site and background. In short, it
displays most of the important parameters developed
in the DQO process. 

A test performance plot is used in the planning
stages of the DQO process to aid in the selection of
reasonable values for the decision error rates (. and
�), the MDD, and the required number of samples.
Selection of these parameters is usually an iterative
process. Trial values of the decision error rates, the
location of the gray region, and its width (the MDD)
are used to generate initial estimates of the required
number of samples and the resulting test perfor-
mance curve. Adjustments to the inputs are made
until a design is achieved that offers acceptable test
performance at an acceptable cost. 

Exhibit 3.1 illustrates an example of a test perfor-
mance plot for decision making on a statistical test
based on the null hypothesis that the site does not
exceed background (Background Test Form 1). At
the origin of the plot, the true difference between
the site and background distributions is zero (û).
Positive values of the difference between the site
and background (û > 0) are plotted on the horizontal
axis to the right of the origin, negative values (û <

0) to the left. The vertical axis shows the value of
the test performance measure, defined as the
probability of deciding the site exceeds background.
This probability ranges from 0 to 1.0 (0 to 100
percent). 

At the left edge of the gray region, the test perfor-
mance curve is no greater than . for contaminated
areas with contaminant concentrations less than or
equal to background (û < 0) and greater than . for
contaminated areas exceeding background (û > 0).
The test performance curve increases as the differ-
ence between the site and background increases.
The number of samples and the standard deviation,
1, determine the rate of increase. The right edge of
the gray region is located at the MDD (û = MDD).
At this value of the difference between the site and
background concentrations, the probability of
deciding that the site exceeds background is equal to
1 - �. When using Background Test Form 1, the test
performance curve equals the power of the test. A
statistical software package for plotting the power of
a statistical test may be used to generate a test
performance plot. EPA has developed two software
packages that generate power curves for the two-
sample t-test: DEFT10 and DataQUEST11. 

Exhibit 3.1 shows a hypothetical value of a substan-
tial difference for this chemical of S = 100. The
value of S was developed by conducting an evalua-
tion of the risks presented by the site. The value of
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Exhibit 3.2 Test performance plot: site does not
exceed background by more than S.

S is used in the DQO process as an upper limit for
the width of the gray region (MDD). In some cases,
an MDD less than S may be selected for the test.
This is determined by site-specific conditions,
summarized by the standard deviation, 1. If the ratio
S/1 exceeds 3, then a sample design with an MDD
less than S may offer a test with better power of
resolution at little additional cost of sampling, a
strategy often described using the term “ALARA”—
“As Low As Reasonably Achievable.” If the MDD
is selected to be smaller than S, then the design is
conservative in the sense that sites with differences
from background smaller than S can be identified by
the test. The test will have a higher power to reject
the null hypothesis for sites with mean concen-
trations that are in the range between the MDD and
S higher than background. In statistical terms, the
power of rejection will be (1 - �) at û = MDD, and
higher than (1 - �) for all û > MDD. 

Selecting an MDD less than S is also useful for
screening a large number of areas using a low cost
sample measurement procedure, with subsequent
confirmatory testing using more expensive proce-
dures before making a final decision. Finally, before
using previously collected data for decision making,
the power of the test should be calculated to
determine if the MDD is less that S.

An equivalent plot in Exhibit 3.2 shows the test
performance curve for a statistical test using the null
hypothesis that the site does not exceed background
by more than a substantial difference (Background
Test Form 2). For this Test Form, the MDD again
measures the width of the gray region, but the gray
region now extends from a difference of û = S-
MDD on the left to a difference û = S on the right.

When using Background Test Form 2, the MDD
may be selected to be as large as S or smaller. The
implications of making the MDD smaller than S for
this Test Form differ from those that occur when
using Background Test Form 1. As the MDD
decreases below S, the test will identify more sites
as not having mean concentrations that exceed back-
ground by more than S. The sites with mean concen-
tration in the range between û = 0 and û = S - MDD

(those with mean concentrations only slightly higher
than background) will have a higher probability of
being classified correctly. With this Test Form, a
tradeoff exists between taking more samples and
making more errors. Since the errors tend to occur
in sites that are marginally acceptable, site owners/
operators have an incentive to increase the number
of samples and the power of the test. 

This second form of background test requires
switching the location of . and �. The Type I error
(.) for Background Test Form 2 is measured by the
difference between 100% and the test performance
curve at the right of the gray region, while the Type
II error (�) is measured by the value of the test
performance curve at a difference equal to û =
MDD, located at the left of the gray region. When
using Background Test Form 2, the test performance
curve equals 100% minus the power of the test.

Comparison of Exhibits 3.1 and 3.2 demonstrates
that the choice . = � and MDD = S will result in
almost identical test performance plots for
Background Test Form 1 and Background Test
Form 2. If . = � and MDD is less than S, then
Background Test Form 1 will indicate that more
contaminated areas require remediation than
Background Test Form 2. In general, . will differ
from �, and the value selected for the MDD may be
smaller than S. 
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When using Background Test Form 1, a Type I error
could lead to unnecessary remediation while a Type
II error could lead to unacceptable health risks. If
Background Test Form 2 is used, a Type II error
could lead to unnecessary remediation while a Type
I error could lead to unacceptable health risks.
Therefore, one should attempt to reduce the chance
of making either of these errors. 

The selection of tolerable decision error values for
hypothesis testing is a decision that must be made
on a site-specific basis. The consequences of
making a wrong decision (such as failing to reject
the null hypothesis when it is false) should be
considered when specifying acceptable values for
the confidence and power factors (. = 20% and � =
10% are maximum values for Background Test
Form 1).

3.5 Sample Size

In most DQO applications, after electing to use a
test with confidence level 100(1 - .) percent, the
required number of samples is determined by
simultaneously selecting:

� the MDD for the test; and
� the power (1 - �) of the test at the MDD. 

Therefore, limits on the probability of committing
Type I and Type II errors can be used as constraints
on the number and location of samples. To deter-
mine realistic limits for the decision errors, the
number of samples (and the corresponding cost of
sampling) could be estimated for a range of probab-
ility values, which would indicate the likelihood of
making either type of error. 

Several reference documents give formulas or tables
for selecting the number of samples, given the
specific confidence and power limits.12 Chapter 5
offers guidance for selecting appropriate statistical
techniques for comparing on-site and background
contaminant concentrations in soil.

Examples of constraints that may be adjusted to

influence the required sample size include: 

� Increasing the decision error rates, . and �,
while considering the increased costs and risks
associated with the increased probability of
making an incorrect decision;

� Increasing the width of the gray region (MDD),
but do not exceed a substantial difference
(MDD < S); and

� Changing the boundaries. It may be possible to
reduce measurement costs by segregating the
site into subunits that require different decision
parameters due to different risks.

The site team should consult with a statistician to
select the appropriate sampling design. Several
sampling design options are available. A consistent
grid to cover the entire site and areas considered as
background should provide a reasonable characteri-
zation of the contamination and background. An
alternative design option might involve collection
from areas where site contamination appears
homogenous. Site history and past activities could
be used to vary grid size and intensify sampling
efforts in the potentially contaminated areas versus
areas with little or no past activity. Additional
options are described in other guidance, including
Chapter 4 of RAGS.

3.6 An Example of the DQO Process

This section introduces an example application of
the DQO process for comparing lead concentrations
in a contaminated area to background. This is a
hypothetical example. The conceptual site model
and remedial goals for individual sites will deter-
mine what sampling and analysis is done at any site.
The example will illustrate some outputs of the
DQO process and will be extended to the prelimin-
ary data analysis stage in Chapter 4 and to the
hypothesis testing stage in Chapter 5. The Super-
fund Program has a Technical Review Workgroup
for Lead (TRW) that can provide technical
assistance.13
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Step 1. State the Problem

An abandoned storage yard has been identified as
the possible source of elevated lead levels found in
neighborhood wells. Although other sources of
background lead are present in the vicinity of the
storage yard due to nearby highways and industrial
facilities, concerns about the site have focused on
the storage area as a likely source of contamination.
Also, the available data are not sufficient to deter-
mine that the site concentrations are different from
background chemical concentrations. An investi-
gator has been assigned to conduct field measure-
ments. Tasks include:

a. Identify the resources available to resolve the
problem, including scoping team

The members of the planning team will include the
plant manager, a plant engineer, a chemist with field
sampling experience, a quality assurance officer, a
statistician, and the investigator assigned by the
EPA.

b. Develop or refine the comprehensive conceptual
site model

Historical site assessment was used to develop a
comprehensive conceptual site model. Due to near-
by highways and industrial sources in the vicinity of
the yard, background lead concentrations in soil are
expected to be above the national average. Because
of run-off from paved areas, background concen-
tration near paved areas are likely to be higher than
background concentrations in soils that are distant
from paved areas. The selection of appropriate back-
ground areas for the comparison was restricted to
areas at least 1,000 meters from heavily used
highways and 30 meters from paved surfaces. 

Step 2. Identify the Decision

Do soils in the storage area have higher lead
contamination than found in soils in the surrounding
area, and if so, are they attributable to the storage
area? Tasks include:

a. Identify the chemicals to analyze

The purpose of the study is to compare total lead
concentrations at the storage yard and in surroun-
ding background areas.

b. Determine if the chemical is likely to be a
background constituent.

Because of the nearby highways and other industrial
sources in the vicinity of the yard, background lead
concentrations are expected to be elevated. Back-
ground concentrations near paved areas are likely to
be higher than background concentrations that are
far distant from paved areas.

Step 3. Identify Inputs into the Decision

a. Which chemicals will be analyzed?

The study team decides to focus on total lead con-
centration.

b. Which soil types and depths need to be
sampled?

Because there is neither surface evidence, nor
historical record, of excavation in the storage area,
the study team decides to measure total lead concen-
tration in the first 12 inches of surface soils. Soils in
background locations will be sampled in the same
way. The TRW has recommended soil sieving at
250 µm to assess exposures to lead on the fine
fraction of soil and dust.14 For background sampling
of lead, this fractionation may be appropriate as it
relates to human health risks. An average soil sam-
ple depth is reasonable, but dust samples naturally
will be collected in shallow or surficial layers.

c. Which comparison tests are likely to be used?

The study team expects that lead concentrations may
not be normally or lognornally distributed. Although
the data may permit use of more powerful tests if
these distributions do apply, the study team decides
to use a nonparametric statistical test for differences
in the soil lead concentration distribution in the
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storage yard and in the surrounding areas. 

d. What coefficient of variation is expected for the
data?

Based on previous sampling in other areas, a coef-
ficient of variation ranging from 50% to 200% is
expected. The team expects that stratification of the
site into paved and unpaved areas will reduce the
variability within each stratum. The team decides
that a coefficient of variation of 100% is expected
within a stratum. The study team agrees to review
this decision, depending on the overall cost esti-
mates produced by the decision objectives.

e. What preliminary remediation goals (PRGs)
may need to be met?

A PRG of 400 mg/kg is available for residential
sites.15

f. Specify the desired power and confidence levels

The study team decides initially on a Type I
decision error limit of . = 10% and a Type II
decision error limit of � = 10% (power = 90%). The
team agrees to review this decision, depending on
the overall cost estimates produced by these
objectives.

Step 4. Define Boundaries of the Study

a. Define the geographic areas for field investiga-
tion

The study team decides that the entire storage yard
area, approximately 5 acres, will be included in the
study. Four different background areas of approxi-
mately 10,000 m2 were selected at distances of
between 1,000 m and 10,000 m from the storage
yard boundaries.

b. Define the characteristics of the soil data or
population of interest

Soil samples should be collected in dry, unpaved
areas. Prepared samples should be free of roots,

leaves, and rocks or other consolidated materials.
When preparing the samples, these materials should
be removed using a 3 cm diameter sieve. Oversized
materials will be retained for additional weighing
and analysis, if necessary. 

c. Divide the soil data population of interest into
strata having relatively homogeneous charac-
teristics

Stratification of the site data into paved and unpaved
is planned for this sampling.

d. Determine the time frame to which the decision
applies

Sampling will be conducted during a four-week
period in the fall. Lead concentrations in soil are
relatively static, and decisions based on the samp-
ling results will remain applicable for many years,
barring additional contamination.

e. Identify practical constraints that may hinder
sample collection

The plant manager agreed to permit EPA sampling
on the storage yard. Permission must be obtained
from the owners of the selected background samp-
ling areas for permission to enter and to collect
background samples on their property.

Step 5. Develop a Decision Rule

If the selected statistical test indicates that the mean
concentration in contaminated areas exceeds the
mean background concentration, then the chemical
will be treated as site-related. Otherwise, if the
statistical test indicates that the mean concentration
in contaminated areas does not exceed the back-
ground mean, the chemical will be treated as coming
from the same population as background.

a. Choose the null hypothesis

The study team chooses a null hypothesis that the
lead concentrations in the storage yard exceed
background concentrations.
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� H0: Lead concentrations in the storage yard
samples exceed background concentrations by
more than S = 50 mg/kg (see paragraphs c and
d, below, for how 50 mg/kg was chosen).

b. Specify the alternative hypothesis

The alternative hypothesis is the opposite of the null
hypothesis.

� HA: Lead concentrations in the storage yard
samples do not exceed the background concen-
trations by more than S = 50 mg/kg.

c. Determine the level of a substantial difference
above background

The study team has decided to use a value of 100
mg/kg as the value for a substantial difference in
lead concentrations between the storage yard and
background areas. This decision was based on the
fact that EPA remedial goals for residential soils for
lead contamination often range from 400 mg/kg to
about 1,000 mg/kg.16 The selected value of S
represents less than 10% of the higher end of this
range of remedial goals.

d. Specify the gray region for the hypothesis test

When using Background Test Form 2, the gray
region of width MDD starts at a difference of û = S
= 100 mg/kg and extends on the left down to û = (S
- MDD). As a trial value, the study team choose to
use an MDD that is one-half of S, 50 mg/kg (refer to
Exhibit 3.3).

The site manager conducted a trade-off analysis
between the cost of extra sampling and the expected
cost of remediating the site unnecessarily, and
decided to make the width of the gray region one-
half of S (refer to Exhibit 3.3).

Test Form 2 has at least 100(1-.)% confidence of
correctly detecting a site that exceeds background
by more than S, regardless of the sample size.
Greater sample size increases the power of the test
and reduces �, which reduces the chance that a site

is remediated unnecessarily. When using Test Form
2, extra samples represent the cost of increasing the
chance that the site is accepted when the true û is
less than S. The study team agrees to review this
decision, depending on the overall cost estimates
produced by the decision objectives. 

Step 6. Specify the Limits on Decision Errors

a. Determine the possible range of the parameter
of interest

The possible range of lead concentrations in
industrial soil is very wide, ranging from 0 to many
grams per kilogram.

b. Specify both types of decision errors (Type I
and Type II)

The team decides that the acceptable limits on
decision errors are . = 10% for Type I errors at a
difference of û = S = 100 mg/kg, and � = 10% for
Type II errors at a difference of û = S/2 = 50 mg/kg.

The investigator was comfortable with the choice of
a 90% confidence level (.=0.10) of the test, because
this reduces the chance of a false negative—decid-
ing that the yard does not exceed background by
more than S. In Exhibit 3.2, the test performance
curve achieves a probability of 90% of detecting a
site at û = S. This reduces the probability of a false
negative to 10% at a difference of û = S = 100

1 MDD/1 n
(mg/kg)

25
50
75

100
125
150
175
200

2
1
0.67
0.50
0.40
0.33
0.29
0.25

5
16
36
63
98

140
190
248

Exhibit 3.3  Required sample size for selected
values of 1
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mg/kg, and to less than 10% at a higher value of û.

The choice of � = 10% and the selected value for the
MDD equal to one-half the width of the gray region
means that the power of 90% will be required at û
= S/2. The plant manager recognizes that a lower
value of � (higher power) would result in a lower
probability of a Type II error and improve his
chances of passing the test, but he has decided
during the trade-off analysis in Step 5d that the extra
sampling costs required to achieve a higher power
are not necessary.

c. Identify the potential consequences of each type
or error, specifying a range of possible para-
meter values (gray area) where consequences of
decision errors are relatively minor

The team decides that the decision errors are . =
10% at û = S, and � = 10% at û = S/2. The gray
region extends from a difference û = 50 mg/kg to a
difference of û = 100 mg/kg (refer to Exhibit 3.2
and decisions made in Steps 5d and 6b). 

d. Check the limits on decision errors to ensure
that they accurately reflect the study team's
concern about the relative consequences for
each type of decision error 

The investigator is satisfied with the choice of the
90% confidence level for the statistical test, because
this will reduce to 10% the chance of falsely
deciding that the yard does not exceed background
by more than 100 mg/kg when it truly does. The use
of a level-. test will provide 90% confidence for all
sample sizes, but may have poor power if the sample
size is too low.

The sample size is fixed by the choice of MDD and
�. Choosing � = 10% at a difference of û = 50
mg/kg means that a power of at least 90% will be
obtained if the true lead concentration on the yard is
at or below that value. The plant manager recog-
nizes that a lower value of � (higher power) would
result in a lower probability that the test will decide
the yard exceeds background lead concentrations if
the yard is only 50 mg/kg higher than background.

However, the manager has decided that this extra
power would require more sampling and unwanted
additional sampling costs.

The DQO parameters ., �, S, and MDD provide
almost all that is needed to calculate the number of
samples (N) required from each population. Thus, N
samples will be collected in contaminated areas, and
a total of N samples will be collected in the back-
ground locations. 

The only remaining parameter required is an
estimate of the standard deviation of the soil lead
concentrations in contaminated areas (1). Since the
variability is usually higher in the contaminated
areas than in background locations, the standard
deviation in contaminated areas is used to estimate
the required sample size. The estimate for 1 usually
is obtained from historical data, if available.
Alternatively, estimates of variability reported
elsewhere at similar sites with similar contamination
problems may be used. If an estimate of the mean
concentration in contaminated areas is available, the
coefficient of variation observed at other sites may
be multiplied by the mean to estimate the standard
deviation.17 

The sample size may be calculated using the
approximate formulas presented in Chapter 3 of
EPA QA/G9.2  More specific sample-size calcula-
tion procedures are given in a multi-agency
manual.18 Sample sizes obtained using the approxi-
mate formulas in EPA QA/G9 are shown in Exhibit
3.3 for a variety of 1 values. Note that the required
sample size increases dramatically when the MDD
is smaller than 1/2. 

A general rule of thumb to obtain a reasonable
sample size is to set the MDD approximately equal
to 1.

Step 7. Optimize the Sampling Design

What is the most resource effective sampling and
analysis design for generating data that are expected
to satisfy the DQOs?
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a. Review the DQO outputs and existing environ-
mental data

The statistician, chemist, and plant engineer on the
study team have reviewed the outputs developed at
each stage of the DQO process.

b. Develop general sampling and analysis design
alternatives

The study team decides to use a randomly-oriented,
rectangular grid sampling strategy for the storage
yard and selected background area. Two random
numbers (x and y) randomly will determine the
starting point selected for the grid. The grid orien-
tation will be determined by a third random number.
The size of the grid will be calculated based on the
number of samples required for each area.

c. Verify that DQOs are satisfied for each design
alternative

Only one sample design is used in this study.

d. Select the most resource-effective design that
satisfies all of the DQOs

The stratified design will reduce variability within
the strata, resulting in lower sampling costs.

e. Document the operational details and theoreti-
cal assumptions of the selected design in the
sampling and analysis plan

The study team has documented the discussions
leading to each DQO parameter.
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H0: û < 0 vs HA: û > 0

with û = �S - �B, where �S is the selected decision parameter (mean, median, etc.) for the site distribution,
and �B is the same parameter for the background distribution. 

5. Equations for computing retrospective power are provided in the detailed step-by-step instructions for
each hypothesis test procedure in Chapter 3 of Guidance for Data Quality Assessment: Practical
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and �B is the same parameter for the background distribution. 
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� Cochran, W. 1977. Sampling Techniques. New York: John Wiley.

CHAPTER NOTES
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Parametric and Nonparametric Methods

Parametric: A statistical method that relies on a
known probability distribution for the population
from which the data are selected. Parametric
statistical tests are used to evaluate statements
(hypotheses) concerning the parameters of the
distribution.

Nonparametric: A distribution-free statistical
method that does not depend on knowledge of the
population distribution.

CHAPTER 4

PRELIMINARY DATA ANALYSIS

This chapter provides guidance for preliminary data
analysis using graphs and distributions of the data.
Depending upon the quality of existing data on site
contamination, quantitative analysis used to estab-
lish background concentration may involve a com-
bination of comparative statistical analysis and
graphical methods. The preliminary data analysis is
an integral part of choosing the appropriate methods
for making meaningful background comparisons to
site contamination. 

Preliminary data analysis should include a detailed
“hands-on” inspection of the site and background
data before proceeding to the statistical tests. The
preliminary inspection may include development of
a posting plot,1 which is a map showing the location
of each sample. The posting plot may reveal likely
sources of contamination, important areas that have
not been sampled, spatial correlations or trends in
the data and the location of suspected outliers. Note
that one possible outcome of the preliminary data
inspection is that the contaminant concentrations on
site greatly exceed background levels, making
formal statistical comparisons unnecessary.

This chapter presents information useful for both
parametric and nonparametric data analysis. Most
parametric statistical methods are based on the
assumption of a known mathematical form for the
probability distributions that represent the site and
background populations. For many parametric
methods, the data user must first determine whether
the data are normally distributed, using any of
several tests for normality.

Nonparametric methods do not require that the data

distribution be characterized by a known family of
distributions. Several graphical methods are avail-
able for nonparametric comparisons.

Data analysis can encompass either the whole data
set from the site, focus on outliers in the background
data set, or emphasize site contaminant concen-
trations. These topics are discussed in the following
sections.

4.1 Tests for Normality

Tests should be conducted on each data set to show
whether it meets the assumption of normality. If the
raw data are not normally or lognormally distribu-
ted, other types of transformations should be
conducted to approximate normality prior to using
the data sets in parametric statistical comparisons,
such as t-tests or the analysis of variance procedure
(ANOVA). The assumption of normality is very
important as it is the mathematical basis for the
majority of statistical tests. Examples of how to
perform each of these tests can be found in Chapter
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4 of EPA’s Guidance for Data Quality Assessment.
The Shapiro-Wilk test is a powerful general purpose
test for normality or lognormality when the sample
size is less than or equal to 50, and is highly recom-
mended. The Shapiro-Wilk test is an effective
method for testing whether a data set has been
drawn from an underlying normal distribution. It can
also evaluate lognormality if the test is conducted on
logarithms of the data. If the normal probability plot
is approximately linear—the data follow a normal
curve—the test statistic will be relatively high. If the
normal probability plot contains significant curves,
the test statistic will be relatively low.

Another test related to the Shapiro-Wilk test is the
Filliben statistic, also called the “probability plot
correlation coefficient.” If the normal probability
plot is approximately linear, the correlation coef-
ficient is relatively high. If the normal probability
plot contains significant curves—the data do not
follow a normal curve—the correlation coefficient
will be relatively low. The Filliben test is recom-
mended for sample sizes less than or equal to 100.

D’Agostino’s test for normality or lognormality is
used when sample sizes are greater than 50. This
test is based on an estimate of the standard deviation
obtained using the ranks of the data. This estimate is
compared to the usual mean square estimate of the
standard deviation, which is appropriate for the
normal distribution. 

The studentized range test for normality is based on
the fact that almost 100 percent of the area of a
normal curve lies within ± 5 standard deviations
from the mean. The studentized range test compares
the range of the sample to the sample standard
deviation. For example, if the minimum of 50 data
points is 40.2, the maximum is 62.7 and the standard
deviation is 4.2, then the studentized range is (62.7 -
40.2)/4.2 = 5.4. Tables of critical sizes up to 1,000
are available for determining whether the absolute
value of the studentized range is significantly large.
The studentized range test does not perform well if
the data are asymmetric and if the tails of the data
are heavier than the normal distribution. In most
cases, this test performs as well as the Shapiro-Wilk

test and is easier to apply.

4.2 Graphing the Data

Graphical methods provide visual examination of
the site and background distributions, and compari-
sons of the two. Graphical methods supplement the
statistical tests described in Chapter 5. Graphical
methods also may be used to verify that the assump-
tions of statistical tests are satisfied, to identify
outliers, and to estimate parameters of probability
distributions fit to the data.

4.2.1 Quantile Plot

A quantile plot displays the entire distribution of the
data, ranging from the lowest value to the highest
value. The vertical axis for the quantile plot is the
measured concentration, and the horizontal axis is
the percentile of the distribution. Each ranked data
value is plotted against the percentage of the data
with that value or less. 

To construct a quantile plot, the data set is ranked
from smallest to largest. The percentage value for
each data point j is computed as

Percentj = 100 ( rankj - 0.5) / n

where n is the number of values in the data set. If
one or more data values are non-detects, all non-
detects are ranked first, below the first numerical
value. The plot starts with the first numerical value.

The slope of the curve in the quantile plot is an
indication of the amount of data in a given range of
values. A small amount of data in a given range will
result in a large slope for the quantile plot. A large
amount of data in a range will result in a more hori-
zontal slope. A sharp rise near the bottom or the top
of the curve may indicate the presence of outliers. 

A graph may contain more than one quantile plot. In
a double-quantile plot the site and background data
are each plotted in a single graph, providing a direct
visual comparison of the two distributions. A curve
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Exhibit 4.1 Example of a double quantile plot.

that is higher in the vertical direction indicates a
higher distribution of data values. 

An example of the double-quantile plot is shown in
Exhibit 4.1. The lower curve shows the distribution
of the background data, and the middle curve
(indicated by symbols only) shows the quantile plot
for the site data. In this example, the entire site
distribution is higher than the background distribu-
tion indicating that some degree of contamination is
likely. The close proximity of the site and back-
ground quantile plots near the 70th percentile indi-
cates that the two distributions differ mainly in the
upper 30 percent of the distributions.

The upper curve in the exhibit shows the back-
ground distribution augmented by S = 10, a hypo-
thetical value for a substantial difference over back-
ground. In this example, the entire site distribution
lies below the S-augmented background distribution,
indicating that the site does not exceed background
by more than a substantial difference. 

Issues affecting the determination of site-specific
values for a substantial difference are discussed in
more detail in the Appendix at the end of this
guidance.

The formal statistical test procedures presented in
Chapter 5 may be used to make decisions that
confirm or deny these graphical indications with
predetermined error rates. In this and the following
exhibits, contaminant concentrations are plotted
using a linear scale. If the data are highly variable,
it may be necessary to transform the graph by using
a logarithmic scale for the concentration axis. Use
of the logarithmic transformation does not affect the
ranks of the data. 

4.2.2 Quantile-Quantile Plots

A quantile-quantile plot is useful for comparing two
distributions in a single graph. The vertical axis of
this plot represents the first distribution of values,
and the horizontal axis represents the second
distribution. The scales for the concentration axes
may be either both linear or both logarithmic. If the

two distributions are identical, the quantile-quantile
plot will form a straight line at 45 degrees when
equal scales are used for the two axes. The slope of
this line has a value of one, regardless of the
selected scales. Deviations from this line show the
differences between the two distributions. 

There are two common applications of the quantile-
quantile plot. One type is used for parametric appli-
cations, and the other for nonparametric compari-
sons. 

� Parametric Quantile-Quantile Plot. In para-
metric applications of the quantile-quantile plot,
the horizontal axis represents the quantiles from
a known distribution, such as the normal distri-
bution. This application is referred to as a
normal probability plot. If the data follow a
normal distribution, the plot will appear as a
straight line. Probability plots are useful for
determining if the site data or the background
data follow a normal or lognormal distribution.
More information on the use of the quantile-
quantile plot to compare with known parametric
distributions is provided in EPA’s Guidance for
Data Quality Assessment, Section 2.3.

� Empirical Quantile-Quantile Plot. In nonpara-
metric applications, the empirical quantile-
quantile plot is used to compare two data sets.
In our case, the two data sets are the site
distribution and the background distribution. If
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Exhibit 4.2 Example of a quantile-quantile plot.

Exhibit 4.3 Example of a quantile difference plot.

there are an equal number of data values in the
two data sets, it is very easy to construct an
empirical quantile-quantile plot. The graph is
constructed by plotting each ranked site value
against the corresponding background value
with the same rank. When the size of the site
data set differs from the size of the background
data set, interpolation is used to construct the
empirical quantile-quantile plot. The interpola-
tion method is discussed below.

The empirical quantile-quantile plot is useful
because it provides a direct visual comparison of the
two data sets. An example of the quantile-quantile
plot is shown in Exhibit 4.2. If the site and back-
ground distributions are identical, the plotted values
would lie on a straight line through the origin with
slope equal to 1, shown in the exhibit as the line
labeled “Site=Background.” Any deviation from this
line shows differences between the two distribu-
tions. If the site differs from the background data
distributions only by an additive difference along
the entire distribution, the plotted site values will lie
on a straight line with slope 1 that does not pass
through the origin. If the site distribution is t units
above the background distribution, the straight line
will have slope 1 and a y intercept at + t. 

A hypothetical level of substantial contamination, S,
is shown in the upper plot in Exhibit 4.2 labeled
“Background + S.” Note that the median interpola-
ted site value is plotted against the median of the
background values at the center of the plot. When
this point lies above the equal-distribution line with
slope 1, the median interpolated site value is larger
than the median background value. 

In the more likely case, the site data set will have a
different number of data values than the background
data set. To construct an empirical quantile-quantile
plot in this case, interpolation is used to calculate a
value from the larger data set that corresponds with
each ranked value in the smaller data set. Detailed
procedures for creating a quantile-quantile plot with
unequal sample sizes are provided in Section 2.3.7.4
of EPA QA/G9.1

4.2.3 Quantile Difference Plot

The quantile difference plot is a variant of the
empirical quantile-quantile plot. When site data are
compared to background data, the quantity of
greatest interest is the amount by which the site
distribution exceeds the background distribution.
This difference can be viewed in the quantile-
quantile plot as the difference between two sloped
lines, the quantile-quantile  plot and the line with
slope 1 where site equals background. More resolu-
tion for examining the differences between the site
and background distributions is obtained by subtrac-
ting each background value from its corresponding
interpolated site value, then plotting the differences
versus their corresponding background values. 



Page 4-5

U.S. EPA External Review Draft — June 2001

An example of the quantile difference plot is shown
in Exhibit 4.3. In the quantile difference plot, back-
ground is represented by the horizontal axis. The
distribution of background values is shown by the
symbols plotted on this axis. A hypothetical level of
substantial contamination of S = 10 appears in this
plot as a horizontal line, not to be exceeded. In this
example, the entire quantile difference plot lies
between the background and the substantial differ-
ence level, indicating that the site exceeds back-
ground by a small amount, but does not exceed
background by more than a substantial difference.

The quantile difference plot permits a quick visual
evaluation of the amount by which the site exceeds
background. In this example, the largest differences
occur in the upper half of the distribution. It is clear
that the interpolated site values do not exceed
background by more than the hypothetical S = 10
concentration units. This conclusion is not as
obvious using the sloped nonparametric quantile-
quantile plot.

Similar warnings exist for use of the quantile
difference plot as for the empirical quantile-quantile
plot when there are more than twice as many site
values as background values. The empirical quan-
tile-quantile plot and the quantile difference plot
work best when the site and background data sets
are of approximately the same size, and they depend
upon the choice of S.

4.3 Outliers

Outliers are measurements that are unusually larger
or smaller than the remaining the data. They are not
representative of the sample population from which
they were drawn, and they distort statistics if used in
any calculations. Statistical tests based on para-
metric methods generally are more sensitive to the
existence of outliers in either the site or background
data sets than are those based on nonparametric
methods. 

Outliers can lead to both Type I and Type II errors.

They can lead to inconclusive results if the results
are highly sensitive to the outliers. 

There are many plausible reasons for the presence of
outliers in a data set:

� Data entry errors. Data that are extremely high
or low should be verified for data entry errors.

� Missing values and non-detects. It is important
that missing value and non-detect codes are not
read as real data. For example the number 999
might be a code for missing data but the compu-
ter program used to analyze the data, if not
properly designated, could misread this as an
extreme value of 999. This is easily remedied. 

� Sampling error. In this case the sample results
for the sample that is not from the population of
interest should be deleted. However, using data
from a population other than the one of concern
is not easily recognized. Therefore, this type of
error can result in the presence of outliers in the
data set. 

� Non-normal population. An outlier might also
exist when a sample is from the population of
interest, but its distribution has more extreme
values than the normal distribution. In this
situation, the sample can be retained if a robust
statistical approach is selected so that the
outliers do not have undue impact.

Outliers may misrepresent the sample population
from which they were taken, and any conclusion
drawn that is based on these results may be suspect.
If there is a large number of outliers in the data set,
it may be necessary to reassess the area. Outliers in
the site data set have different implications from
outliers in the background data set. For example, an
on-site outlier can indicate a “hot spot”—the
contaminant passes the t-test, but one sample
exceeds the upper tolerance limit (UTL), which
indicates that the one spot needs attention. An
outlier in the background data set, however, might
indicate that one of the background samples was
collected in a location that is not truly background.
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In such a case, an outlier test should be used (along
with a qualitative study of where the sample in
question was collected) to see if that data point
should be discarded from the background set. 

Statistical outlier tests give probabilistic evidence
that an extreme value does not “fit” with the
distribution of the remainder of the data and is
therefore a statistical outlier. There are five steps
involved in treating extreme values or outliers:

1. Identify extreme values that may be potential
outliers;

2. Apply statistical tests;

3. Scientifically review statistical outliers and
decide on their disposition;

4. Conduct data analyses with and without statisti-
cal outliers; and 

5. Document the entire process.

More guidance on handling outliers is given in
Chapter 5.

4.4 Censored Data (Non-Detects)

Contamination on the site or in background areas
may be present at concentrations close to the detec-
tion limits. A sample is said to be “censored” when
certain values are unknown, although their existence
is known. Type I censoring occurs when the sample
is censored by reference to a fixed value. Non-detect
measurements are examples of Type I left censoring.
The specific value is unknown, but the existence of
a concentration value in the interval from 0 to the
reporting limit is known. Concentration values may
be censored at their detection limits or at some
arbitrary level based on detection limits. 

A detection limit is the smallest concentration of a
substance that can be distinguished from zero. Con-
sequently, non-detects may not represent the

absence of a chemical but its presence at a concen-
tration below its reliable minimum detection level.
Many parametric statistical methods require numeri-
cal values for all data points. One approach is to
impute a surrogate value for non-detects, commonly
assumed to be half the reporting limit. As an alterna-
tive to half the reporting limit, a random value
between the reporting limit and zero may be chosen
to represent each non-detect for the purposes of
testing assumptions concerning distributions. Both
approaches may seriously affect the estimated
distribution parameters. 

If less than 50 percent of the site and background
samples are non-detects, then distributions of both
the background and the site sample may be
determined by using surrogate values. Probability
plots and goodness-of-fit tests may be performed for
each data set, first including the non-detects as part
of the sample using random values for non-detects,
and second, excluding the non-detects from the
sample. If the two sets of estimated parameters
differ only slightly, then the non-detect problem is
of lesser importance. However, if the two sets of
estimates differ significantly, then the surrogate
value approach should be re-evaluated.

If more than 50 percent of the measurements in
either the background sample set or the site sample
set are non-detects, it may not be possible to com-
pare the means of the two distributions. An alterna-
tive approach is to compare the upper percentiles of
the two distributions by comparing the proportion of
the two populations that is above a fixed level, as
recommended in EPA QA/G-9.2 Comparisons may
be made for the upper percentiles of each distribu-
tion despite the large number of non-detects.

Nonparametric methods may be used to avoid the
necessity of imputing surrogate values for non-
detect measurement. Nonparametric methods are
often based only on the ranks of the data, and the
non-detect values can be assigned unambiguous
ranks without the need for assigning surrogate
values.
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1. U.S. Environmental Protection Agency (EPA). 2000. Guidance for Data Quality Assessment: Practical
Methods for Data Analysis, EPA QA/G-9, QA00 Version. EPA 600-R-96-084. Quality Assurance
Management Staff, Washington, DC. Available at http://www.epa.gov/quality/qa_docs.html. See Section
2.3.9.1 for guidance on preparing a posting plot.

2. Ibid, Section 3.3.2.1.

CHAPTER NOTE
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CHAPTER 5

COMPARING SITE DATA
TO BACKGROUND DATA

This chapter provides guidance on selecting quan-
titative statistical approaches for comparing site data
to background data. Statistical methods allow for
specifying (controlling) the probabilities of making
decision errors and for extrapolating from a set of
measurements to the entire site in a scientifically
valid fashion.1

Several methods are available for comparing back-
ground to site data. These can be divided into several
major categories: data ranking and plotting, descrip-
tive summaries, simple comparisons, parametric
tests, and nonparametric tests. For many of these
methods, data users first must determine whether the
data are normally distributed, using any of several
tests for normality. Data can also be assessed in terms
of the whole data set from the site, or with a focus on
outliers in the background data set or in the con-
taminant concentrations at the site (see Chapter 4).

The issue of randomness is an important element of
most statistical procedures when sample results are to
be extrapolated to the entire site or background
sampling area, rather than only representing the areas
where measurements were made. The statistical tests
discussed in this chapter assume that the data
constitute a random sample from the population. If a
sample of measurements is to represent the entire
site, every sampling point within the area represented
by the sample must have a non-zero probability of
being selected as part of the sample. If all points have
an equal opportunity for selection, the sampling
procedure will generate a simple random sample.
Most procedures presented in this chapter require a
simple random sample. Stratification of the site will

usually result in differing probabilities of selection
within each stratum. In this case, the sample is not
a simple random sample, and a statistician should be
consulted before conducting the analysis. 

Judgmental (or “authoritative”2) samples are
samples that are collected in areas suspected to have
higher contaminant concentrations due to operation-
al or historical knowledge. Judgmental samples
cannot be extrapolated to represent the entire site. In
some cases, there is a great deal of bias associated
with the collection of judgmental samples. The
statistical procedures recommended in this chapter
are based on random samples and should not be
used on judgmental samples. Graphical methods
such as posting plots may be used to display judg-
mental data. These displays may reveal likely
sources and pathways of contamination. Kriging3

and other spatial smoothing algorithms may be
applied to identify areas with suspected high con-
centrations for conducting the remediation, although
the estimated mean concentrations must be recog-
nized for their upward bias.

Depending upon the data and other site-specific
considerations, statistical analysis should involve
one or a combination of the following methods:

� Parametric statistical comparison methods in-
volving comparison of one or more parameters
of the distribution of site samples with the
corresponding parameter of the background
distribution, such as the Student t-test; or

� Nonparametric tests, such as Wilcoxon Rank
Sum (WRS) test. 
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The box at the top of this page lists some of the
statistical tests and applications recommended for
establishing background constituent concentrations.
These tests are discussed in more detail in the
following sections.

5.1 Descriptive Summary Statistics

Several statistics can be used to describe data sets.
These statistics may be used in many of the tests
described later in this chapter. There are two
important features of a data set: central tendency and
dispersion. 

To describe central tendency, estimators of the mean
such as arithmetic mean, median, mode, and
geometric mean are employed. The sample mean is
an arithmetic average for simple random sampling
designs; however for complex sampling designs, such
as stratification, the sample mean is a weighted
arithmetic average. The sample mean is influenced
by extreme values (large or small) and can easily be
influenced by non-detects. The sample median value
falls directly in the middle of the data when the

measurements are ranked in order from smallest to
largest. More simply, the median is the middlemost
value in the data set. The median is less affected by
the presence of values recorded as being below the
detection limit.

The dispersion around the central tendency is
described by such items as the range, variance,
sample standard deviation, and coefficient of
variation. The easiest measure of dispersion is the
sample range. For small samples, the range is easy
to interpret and may adequately represent the spread
of the data. For large samples, the range is not very
informative because it only considers and is greatly
influenced by extreme values. The sample variance
measures the dispersion from the mean of a data set
and is affected by extreme values and by a large
number of non-detects. The coefficient of variation
(CV) is a unitless measure that allows the
comparison of dispersion across several sets of data.
The CV is often used instead of the standard
deviation in environmental applications because the
standard deviation is often proportional to the mean.
The standard deviation is affected by values below
the detection limit, and some method of substituting

Method Application Comments

Descriptive Summary 
� Mean
� Median
� Standard deviation
� Variance
� Percentiles
� Kurtosis 

Preliminary examination of data
for comparison with site history
and land use activities in the
establishment of background. Use
as a preliminary screening tool.

Simple and straightforward; less
statistical rigor.

Simple Comparisons Used with very small data sets. Not recommended

Parametric Tests 
� Student t-test
� ANOVA
� Student t-test
� Behrens-Fisher Student t-test

Data must be normal or transfor-
mable to normal. Use when more
data points are available (n > 10). 
Examine data for normality or
lognormality in distribution.

Statistically robust and used
frequently in parametric data
analysis.

Nonparametric Tests
� Wilcoxon Rank Sum Test

(also called the “Mann-
Whitney Test”)

� Gehan Test

Use when data are not normally
distributed, as rank-ordered tests
make no assumption on
distribution.

Statistically robust and used
frequently in background
estimation.
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numerical values for these must be found.

5.2 Simple Comparison Methods

Simple comparison methods rely on descriptive
summary statistics, such as comparing means or
maximums. These approaches can be used with very
small data sets but are highly uncertain.

5.3 Statistical Methods for
Comparisons with Background

Many statistical tests and models are only appropriate
for data that follow a particular distribution.
Statistical tests that rely on knowledge of the form of
the population distribution for the data are known as
parametric tests, because the test is usually phrased
in terms of the parameters of the distribution assumed
for the data. Two of the most important distributions
for tests involving environmental data are the normal
distribution and the lognormal distribution. A normal
distribution has only two parameters, the mean and
variance. Lognormal distributions also have only two
parameters, but there are several common ways to
parameterize the lognormal distribution. In this
chapter, use of parametric comparison methods like
t-tests or ANOVA may require normalization of data
by conversion to a log scale.

Tests for the distribution of the data (such as the
Shapiro-Wilk test for normality) often fail if there are
insufficient data, if the data contain multiple
populations, or if there is a high proportion of
non-detects in the sample.4 Tests for normality lack
statistical power for small sample sizes. Therefore,
for small sample sizes, nonparametric tests should be
used to avoid incorrectly assuming the data are
normally distributed when there is not enough
information to test this assumption. Thus, when the
distribution cannot be determined, it is more
appropriate to use nonparametric tests. 

Statistical tests that do not assume a specific
mathematical form for the population distribution are
called distribution-free or nonparametric statistical
tests. Nonparametric tests have good test perfor-

mance for a wide variety of distributions, and their
performance is not unduly affected by outliers.
Nonparametric tests can be used for normal or non-
normal data sets. If one or both of the data sets fail
to meet the test for normality, or if the data sets
appear to come from different types of distributions,
then nonparametric tests may be the only alternative
for the comparison with background. However, for
normal data with no outliers or non-detect values,
the parametric methods discussed in the next section
are somewhat more powerful. Nonparametric tests
are discussed in Section 5.3.2.

The choice of a parametric test or a nonparametric
test often depends on sample size. There are differ-
ent circumstances that must be considered:

� If a parametric test is applied to data from a
non-normal population and the sample size is
large, the parametric test will work well. The
central limit theorem ensures that parametric
tests will work because parametric tests are
robust to deviations from normal distributions
as long as the sample size is large. Unfortun-
ately, it is impossible to say how large is large
enough because it depends on the nature of the
particular distribution. Unless the population
distribution is very peculiar, you can safely
choose a parametric test when there are at least
24 data points in each group. 

� If a nonparametric test is applied to data from a
normal population and the sample size is large,
the nonparametric test will work well. In this
case, the p values tend to be a little too large,
but the discrepancy is small. In other words,
nonparametric tests are only slightly less
powerful than parametric tests with large
samples. 

� If a parametric test is applied to data from a
non-normal population and the sample size is
small, the p value may be inaccurate because the
central limit theory does not apply in this case.

� If a nonparametric test is applied to data from a
non-normal population and the sample size is
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small, the p values tend to be too high. In other
words, nonparametric tests may lack statistical
power with small samples. 

In conclusion, large data sets do not present any
problem. In this case the nonparametric tests are
powerful and the parametric tests are robust.
However, small data sets are challenging. In this case
the nonparametric tests are not powerful, and the
parametric tests are not robust.

5.3.1 Parametric Tests

Parametric statistical tests assume the data have a
known distributional form. For example, the widely
used t-test assumes a normal distribution for the data.
They may also assume that the data are statistically
independent or that there are no spatial trends in the
data. Parametric statistical comparison methods, in
the context of this guidance, involve comparison of
one or more distribution parameters of site samples
with corresponding parameters of the background
distribution. 

Tests for the distribution of the data offer clues on
metals detected frequently at higher concentrations.
For example, as a general rule, naturally occurring
aluminum, iron, calcium, and magnesium tend to be
normally distributed, while trace metals tend to have
lognormal distributions.

Tests of Means

The most common method for background compari-
sons involves a comparison between means using t-
tests or similar parametric methods. If the estimated
means do not differ by a statistically significant

amount (given a predetermined level of significance
such as 0.05), then there is no substantial difference
in the mean of the site data as compared to the mean
of the background data.

To conduct a t-test, a null hypothesis must first be
developed. (See Section 3.1 for developing null
hypotheses.) The t-statistic calculated from the data
is then compared to a critical value for the test
which depends on the level of confidence selected to
determine whether or not the null hypothesis should
be rejected. Although the t-test is derived based on
normality, the conclusion that the data do not follow
a normal distribution does not discount the t-test.
Generally, the t-test is robust and therefore not
sensitive to small deviations from the assumptions
of normality.

Any t-test should be discussed with a statistician
prior to use since there are a number of variations
and assumptions that can apply. The Student t-test
has good application when comparing background
sites to potentially contaminated sites.5

Methods such as Cochran’s Approximation to the
Behrens-Fischer Student t-test are also recommen-
ded. This statistical comparison method requires
that two or more discrete samples be taken at each
sampling station. Note that the choice of a specific
t-test depends on site-specific information and other
statistical considerations.

Tests of Outliers

The are many parametric tests for outliers, based on
deviations from the normal distribut EPA’s QA/G-9,
Guidance for Data Quality Assessment2 ion. Three

Parametric Tests
Test Purpose Assumptions 
t-test Test for difference in means Normality, equal variances

Upper Tolerance Limit (UTL) Test for outliers Normality

Extreme Value (Dixon’s) Test Test for one outlier Normality, not including outlier

Rosner’s Test Test for up to 10 outliers Normality, sample size 25 or larger

Discordance Test Test for one outlier Normality, not including the outlier
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of these tests are explained in detail in, including
Dixon’s test, Rosner’s test, and the Discordance test
shown in the box on the previous page. In addition to
these tests, suspected outliers may be identified using
a tolerance limit approach. There are parametric and
nonparametric forms of tolerance intervals. This
section discusses the parametric version.6 A nonpara-
metric version of tolerance intervals is presented in
Section 5.3.2.

Confidence intervals provide interval estimates for
unknown population parameters. Tolerance limits
differ from confidence intervals. Tolerance limits
provide an interval within which at least a certain
proportion of the population lies with a specified
probability that the stated interval does indeed
“contain” the proportion of the population. An
example would be a situation in which you are trying
to draw a random sample, and want to know how
large the sample size should be so that you can be 95
percent sure that at least 95 percent of the population
lies between the smallest and the largest observation
in the sample. The tolerance limit described here
would be a two-sided tolerance limit. Similarly one-
sided tolerance limits can be developed. In fact, one-
sided tolerance limits are identical with one-sided
confidence intervals for quantiles (percentiles).

Establishing a tolerance limit (TL) is recommended
for identifying outliers. A TL is a confidence limit on
a percentile of the data, rather than a confidence limit
on the mean. For example, a 95 percent TL for 95
percent coverage represents the value below which
95 percent of the population are expected to fall
(with 95 percent confidence). In using a TL for back-
ground comparisons, a site sample is considered to
be contaminated when its concentration exceeds the
upper TL of the background data set. TL tests are
fairly sensitive and require a minimum of 8 to 16
background data points. A one-sided upper TL is
estimated using the mean plus a standard deviation
times the tolerance coefficient (K) at the 95 percent
probability level for a 95 percent coverage. 

5.3.2 Nonparametric Tests

The statistical tests discussed in the previous section

rely on the mathematical properties of the popula-
tion distribution (normal or lognormal) selected for
the comparison with background. Assumptions
concerning the population distribution are difficult
to verify or difficult to satisfy for both populations.
Use of parametric statistical tests when the data do
not follow the assumed distribution may lead to
inaccurate comparisons that are adversely affected
by outliers and by assumptions made for handling
non-detect values. 

Tests that do not assume a specific mathematical
form for the underlying distribution are called
distribution-free or nonparametric statistical tests.
The property of robustness is the main advantage of
nonparametric statistical tests. Robustness means
that nonparametric tests have good test performance
for a wide variety of distributions, and that perfor-
mance is not unduly affected by outliers.

Nonparametric tests can be used for normal or non-
normal data sets. If one or both of the data sets
failed to meet the test for normality, or if the data
sets appear to come from different types of
populations, then nonparametric tests may be the
only alternative for the comparison with back-
ground. If the two data sets appear to be from the
same family of distributions, use of a specific
statistical test that is based on this knowledge is not
necessarily required because the nonparametric tests
will perform almost as well. However, for normal
data with no outliers or non-detect values, the
parametric methods discussed in the previous
section are somewhat more powerful. 

Several nonparametric test procedures are available
for conducting background comparisons. Nonpara-
metric tests compare the shape and location of the
two distributions instead of a statistical parameter
(such as mean and median). Nonparametric tests are
currently used by some EPA Regions on a case-by-
case basis. These methods have varying levels of
sensitivity and data requirements and should be
considered as the preferred methods whenever data
are heavily censored (a high percentage of non-
detect values). 
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Nonparametric Tests

Test Assumptions

Wilcoxon Rank
Sum (WRS)

Both samples are randomly
selected from respective popula-
tions and mutually independent;
distributions are identical (ex-
cept for possible difference in
location parameter).

Gehan Test Multiple detection limits and
non-detect.

Wilcoxon Rank Sum Test for Background
Comparisons

The Wilcoxon Rank Sum (WRS)7 test is an example
of a nonparametric test used for determining whether
a difference exists between site and background
population distributions. The WRS tests whether
measurements from one population consistently tend
to be larger (or smaller) than those from the other
population. This test determines which distribution is
higher by comparing the relative ranks of the two
data sets when the data from both sources are sorted
into a single list. One assumes that any difference
between the background and site concentration
distributions is due to a shift in the site concentra-
tions to higher values (due to the presence of
contamination in addition to background).

Two assumptions underlying this test are: 1) samples
from the background and site are independent,
identically distributed random samples, and 2) each
measurement is independent of every other measure-
ment, regardless of the set of samples from which it
came. The test assumes also that the distributions of
the two populations are identical in shape (variance),
although the distributions need not be symmetric. 

The WRS test has three advantages for background
comparisons: 

� The two data sets are not required to be from a
known type of distribution. The WRS test does
not assume that the data are normally or log-
normally distributed, although a normal distribu-

tion approximation often is used to determine
the critical value for the test for large sample
sizes. 

� It allows for non-detect measurements to be
present in both data sets.8 The WRS test can
handle a moderate number of non-detect values
in either or both data sets by treating them as
ties.9 Theoretically, the WRS test can be used
with up to 40 percent or more non-detect
measurements in either the background or the
site data. If more than 40 percent of the data
from either the background or site are non-
detect values, the WRS test should not be
used.10

� It is robust with respect to outliers because the
analysis is conducted in terms of ranks of the
data. This limits the influence of outliers
because a given data point can be no more
extreme than the first or last rank. 

The WRS test may be applied to either null
hypothesis in the two forms of background test
discussed in Chapter 3: indistinguishable from back-
ground or exceed by more than a substantial differ-
ence. In either form of background test, the null
hypothesis is assumed to be true unless the evidence
in the data indicates that it should be rejected in
favor of the alternative. 

WRS Test Procedure for Background Test Form 1

Null Hypothesis (Ho): The mean of the site distribu-
tion is less than or equal to the mean of the
background (û < 0).

Alternative Hypothesis (HA): The mean of the site
distribution exceeds the mean of the background
distribution (û > 0).
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Procedures for Non-Detect Values in WRS Test

If there are t non-detect values, they are consider-
ed as “ties” and are assigned the average rank for
this group. Their average rank is the average of the
first t integers, (t+1)/2. If more than one detection
limit was in use, all observations below the largest
detection limit should be treated as non-detect
values. Alternatively, the Gehan test may be
performed.

The WRS test for Background Test Form 1 is applied
as outlined in the following steps. The lead-con-
taminated storage yard example from Chapter 3
serves to illustrate the procedure. (Although the study
team selected to use Background Test Form 2 in this
example problem, both forms of the test will be
evaluated.)

Hypothetical data for the storage yard example is
shown in Exhibits 5.1 and 5.2 for the on-site and
background areas, respectively. There is one non-
detect measurement (ND) in the data collected on site

Data
(mg/kg)

Source

ND
34.0
39.5
48.6
54.9
70.9
72.1
81.3
83.2
86.2
88.2
96.1
98.3
104.3
105.6
129.0
139.3
156.9
167.9
208.4

Site
Site
Site
Site
Site
Site
Site
Site
Site
Site
Site
Site
Site
Site
Site
Site
Site
Site
Site
Site

Exhibit 5.1 Site data.

Data
(mg/kg)

Source Data+50
(mg/kg)

Data+100
(mg/kg)

Source

ND Background 50.0 100.0 Background+S
ND Background 50.0 100.0 Background+S
ND Background 50.0 100.0 Background+S
ND Background 50.0 100.0 Background+S
ND Background 50.0 100.0 Background+S
0.1 Background 50.1 100.1 Background+S

15.7 Background 65.7 115.7 Background+S
46.1 Background 96.1 146.1 Background+S
48.1 Background 98.1 148.1 Background+S
49.3 Background 99.3 149.3 Background+S
53.5 Background 103.5 153.5 Background+S
58.0 Background 108.0 158.0 Background+S
59.7 Background 109.7 159.7 Background+S
68.0 Background 118.0 168.0 Background+S
88.5 Background 138.5 188.5 Background+S
96.5 Background 146.5 196.5 Background+S

115.8 Background 165.8 215.8 Background+S
122.9 Background 172.9 222.9 Background+S
126.8 Background 176.8 226.8 Background+S
147.5 Background 197.5 247.5 Background+S

Exhibit 5.2 Background data.
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and five in the background data set. The background
non-detects were treated as 0 values when adding S
to the background measurements. This is a more
conservative approach than using ½ the detection
limit or other surrogate or random numbers for the
non-detect values. The WRS test is very robust to this
small modification as it is unlikely that any reason-
able surrogate value will affect significantly the
assigned rank of the non-detects in the combined data
set. 

Exhibit 5.3 demonstrates the WRS test procedure for
Background Test Form 1, testing the null hypothesis
that the site is indistinguishable from background.
The background measurements (m = 20) and the site
measurements (n = 20) are ranked in a single list in
order of increasing size from 1 to N, where N = m +
n = 40. At the top of the list, all six non-detect values
are considered as ties and are assigned an average
rank of 3.5 = (6+1)/2. (See box below). The ranks for
each area are shown in the two columns at the right
of the exhibit. The sum of the ranks of the site
measurements (Ws = 491.5) and the sum of the ranks
of the background measurements (Wb = 328.5) are
shown at the bottom of the exhibit. Since the sum of
the first N = 40 integers is N(N+1)/2 = 40(40+1)/2 =
820, the sum of Ws plus Wb should equal this
number. The sum of the ranks of the site measure-
ments (Ws = 491.5) is the test statistic used for
Background Test Form 1. The sum of the site ranks
is used as the test statistic for background test from 1
because we are looking for evidence that the site
distribution exceeds the background distribution. To
conduct the test, Ws is compared with the critical
value for the WRS test for the appropriate values of
n, m, and ..11 If Ws is greater than the tabulated
critical value for the test, the null hypothesis that the
site is indistinguishable from background is to be
rejected. 

Exhibit 5.6 shows the critical values for the WRS test
for selected values of . for data sets with n = m = 20.
The critical value for . = 10 percent is 458, and the
critical value for . = 5 percent is 471. Since Ws

exceeds the critical values for most commonly used
values of ., the null hypothesis is rejected. Hence,
the site is distinguishable from background at a

confidence level of 95 percent. Note that the null
hypothesis would not be rejected at . = 1 percent. 

WRS Test Procedure for Background Test Form 2

Null Hypothesis (Ho): The site distribution exceeds
the background distribution by more than a
substantial difference S (û > S).

Alternative Hypothesis (HA): The site distribution
does not exceed the background distribution by
more than S (û < S).

The WRS test for Background Test Form 2 is
applied as outlined in the following steps. The lead
example will again serve as an illustration of the
procedure. In the example from Chapter 3, the study
team chose to use Background Test Form 2, with .
= 10 percent and a substantial difference of S = 100
mg/kg. First, the background measurements are
adjusted by adding S = 100 mg/kg to each measured
value. Exhibit 5.2 contains two columns on the right
which show the S-adjusted background data for S =
50 mg/kg and S = 100 mg/kg.

The adjusted background measurements and the
measurements from the site are ranked in increasing
order from 1 to 40 in Exhibit 5.4. Note that the five
adjusted background measurements that were non-
detects are tied at 100 mg/kg. They are all assigned
the average rank of 16 for that group of tied
measurements. 

The sum of the ranks of the adjusted measurements
from background, Wb = 544, is the test statistic for
Background Test Form 2. Note that the test statistic
for Background Test Form 2 differs from the test
statistic for Background Test Form 1. In this case,
we are looking for evidence that S plus the
background distribution is greater than the site
distribution. Earlier, in Background Test Form 1, we
were looking for evidence that the site distribution
exceeds the (unmodified) background distribution.
The critical value for the WRS test in Exhibit 5.6 for
. = 10 percent is 458. Since Wb is greater than the
critical value, the null hypothesis that the site
exceeds background by more than a substantial
difference of 100 mg/kg is rejected at the 90 percent
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confidence level.

Exhibit 5.5 shows the WRS test for the lead example
using Background Test Form 2 with a smaller (more
conservative) value for a substantial difference, S =

50 mg/kg. The sum of the ranks of the S-adjusted
background measurements is Wb = 441. After
examination of Exhibit 5.6, it is clear that the null
hypothesis that the site exceeds background by more
than 50 mg/kg cannot be rejected at any reasonable
level of confidence. 

Ranks for
Rank Data

(mg/kg)
Source Site Background

3.5 ND Site 3.5
3.5 ND Background 3.5
3.5 ND Background 3.5
3.5 ND Background 3.5
3.5 ND Background 3.5
3.5 ND Background 3.5
7 0.1 Background 7
8 15.7 Background 8
9 34.0 Site 9

10 39.5 Site 10
11 46.1 Background 11
12 48.1 Background 12
13 48.6 Site 13
14 49.3 Background 14
15 53.5 Background 15
16 54.9 Site 16
17 58.0 Background 17
18 59.7 Background 18
19 68.0 Background 19
20 70.9 Site 20
21 72.1 Site 21
22 81.3 Site 22
23 83.2 Site 23
24 86.2 Site 24
25 88.2 Site 25
26 88.5 Background 26
27 96.1 Site 27
28 96.5 Background 28
29 98.3 Site 29
30 104.3 Site 30
31 105.6 Site 31
32 115.8 Background 32
33 122.9 Background 33
34 126.8 Background 34
35 129.0 Site 35
36 139.3 Site 36
37 147.5 Background 37
38 156.9 Site 38
39 167.9 Site 39
40 208.4 Site 40

820 Sum of Ranks 491.5
Ws

328.5
Wb

Exhibit 5.3 WRS test for Test Form 1
H0: site < background

Ranks for
Rank Data

(mg/kg)
Source Site Background

+ 100
1 ND Site 1
2 34.0 Site 2
3 39.5 Site 3
4 48.6 Site 4
5 54.9 Site 5
6 70.9 Site 6
7 72.1 Site 7
8 81.3 Site 8
9 83.2 Site 9

10 86.2 Site 10
11 88.2 Site 11
12 96.1 Site 12
13 98.3 Site 13
16 100.0 Background+S 16
16 100.0 Background+S 16
16 100.0 Background+S 16
16 100.0 Background+S 16
16 100.0 Background+S 16
19 100.1 Background+S 19
20 104.3 Site 20
21 105.6 Site 21
22 115.7 Background+S 22
23 129.0 Site 23
24 139.3 Site 24
25 146.1 Background+S 25
26 148.1 Background+S 26
27 149.3 Background+S 27
28 153.5 Background+S 28
29 156.9 Site 29
30 158.0 Background+S 30
31 159.7 Background+S 31
32 167.9 Site 32
33 168.0 Background+S 33
34 188.5 Background+S 34
35 196.5 Background+S 35
36 208.4 Site 36
37 215.8 Background+S 37
38 222.9 Background+S 38
39 226.8 Background+S 39
40 247.5 Background+S 40

820 Sum of Ranks 276
Ws

544
Wb

Exhibit 5.4 WRS test for Test Form 2
H0: site > background + 100
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In conclusion, site concentrations in this example are
significantly higher than background concentrations.
The site distribution may exceed background by 50
mg/kg or more, but it is unlikely that the site distribu-
tion is more than 100 mg/kg above background. 

Gehan’s Form of the WRS Test

The Gehan test is a generalized version of the WRS
test.12 If there are a large number of non-detect
measurements and several different detection levels,
Gehan’s form of the WRS test is a more powerful
test for the background comparison. The Gehan test
addresses multiple detection limits using a modified
ranking procedure rather than relying on the “all ties
get the same rank” approach used in the WRS test.
After the modified ranking is completed, the
standard WRS test procedure discussed above is
applied to determine if the null hypothesis should be
rejected. It has been recommended that there should
be at least 10 data values in each data set to use this
test.

Walsh’s Tests for Outliers

Nonparametric tests for outliers are summarized in
the box above. Walsh’s test is a nonparametric test
for determining the presence of outliers in either the
background or on-site data sets. This test was
developed to detect up to a specified number of
outliers, r. The test requires large sample sizes (n >
60 for . = 10 percent; and n > 220 for . = 5
percent). Procedures for conducting this test is
discussed in Section 4.4 of QA/G-9, Guidance for
Data Quality Assessment.2

Nonparametric Tolerance Intervals

The parametric tolerance intervals discussed in

Ranks for
Rank Data

(mg/kg)
Source Site Background

+ 50
1 ND Site 1
2 34.0 Site 2
3 39.5 Site 3
4 48.6 Site 4
7 50.0 Background+S 7
7 50.0 Background+S 7
7 50.0 Background+S 7
7 50.0 Background+S 7
7 50.0 Background+S 7

10 50.1 Background+S 10
11 54.9 Site 11
12 65.7 Background+S 12
13 70.9 Site 13
14 72.1 Site 14
15 81.3 Site 15
16 83.2 Site 16
17 86.2 Site 17
18 88.2 Site 18
19 96.1 Background+S 19
20 96.1 Site 20
21 98.1 Background+S 21
22 98.3 Site 22
23 99.3 Background+S 23
24 103.5 Background+S 24
25 104.3 Site 25
26 105.6 Site 26
27 108.0 Background+S 27
28 109.7 Background+S 28
29 118.0 Background+S 29
30 129.0 Site 30
31 138.5 Background+S 31
32 139.3 Site 32
33 146.5 Background+S 33
34 156.9 Site 34
35 165.8 Background+S 35
36 167.9 Site 36
37 172.9 Background+S 37
38 176.8 Background+S 38
39 197.5 Background+S 39
40 208.4 Site 40

820 Sum of Ranks 379
Ws

441
Wb

Exhibit 5.5 WRS test for Test Form 2
H0: site > background + 50

. Critical Value

0.20 442
0.15 449
0.10 458
0.05 471

0.025 482
0.010 495
0.005 504
0.001 521

Exhibit 5.6 Critical Values for the WRS Test
for n = m = 20
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Section 5.2 are derived based on the assumption of a
normal distribution. If the data are not normal and are
not easily transformed to normality, then non-
parametric tolerance intervals may be calculated for
the background distribution to provide a tolerance
level for screening site data. The use of nonpara-
metric tolerance intervals is explained as follows:

By definition, a single random sample from any
distribution has a probability of 0.1 of exceeding the
90th percentile of the distribution (x.90). The
probability that the maximum of two independent
random samples from the same distribution will
exceed the 90th percentile is calculated using
probability theory. The probability that the maximum
exceeds the 90th percentile equals 1 minus the
probability that both samples are less than the 90th
percentile:

Pr{ Max(X1, X2) > x.90 } = 1 - Pr{ X1 < x.90

and

X2 < x.90 } = 1 - (.90)(.90) = 1 - (.90)2 = 0.19

In general we have, 

Pr{ Max(X1, ... , Xn) > x.90 } = 1 - (.90)n

This probability increases as the number of samples
increases. In a sample size of 22, there is more than
a 90 percent chance that the maximum in the sample
will exceed the 90th percentile of the underlying
distribution. In this case, 

Pr{ Max(X1, ... , X22) > x.90 } = 0.9015

If we take 22 independent samples, the maximum of
these samples will usually exceed the 90th percentile.
So if the maximum of 22 samples is less than the
level of concern, then there is at least a 90 percent
probability that the 90th percentile of the population
distribution is also less than the level of concern. In
other words, there is less than a 10 percent chance
that the maximum of 22 samples would fail to exceed
the 90th percentile of the distribution, and this is the
only way 90th percentile could exceed the level of

concern if the maximum does not. Therefore, the
maximum value in a sample size of 22 is said to
provide a one-sided 90 percent non-parametric
tolerance interval for the 90th percentile of the
population distribution. Similarly, the maximum
value in a sample size of 45 provides a 90 percent
nonparametric tolerance interval for the 95th

percentile of the population. Similarly, n = 58 gives
a 95 percent TL for the 95th percentile.

5.4 Hypothesis Testing

Hypothesis testing was discussed in detail in Section
3. Here, some of this information is reviewed, and
additional aspects of such testing are discussed. 

5.4.1 Initial Considerations

For Superfund sites, use of a null hypothesis and
alternative hypothesis is recommended when
comparing data sets from contaminated areas with
background data. For example, a null hypothesis
could be “there is no difference between the mean
contaminant concentration in samples from
contaminated areas and background data sets.” The
alternative hypothesis would be “there is a
difference between mean contaminant concentration
in samples from contaminated areas and background
data sets.” To conduct the comparison, parametric
or nonparametric statistical tests are recommended.
Use of parametric comparison methods like t-tests
or ANOVA may require normalization of data such
as the conversion to a log scale. Depending upon the
data and other site-specific considerations, statistical
analysis should involve one or a combination of the
following methods:

� A preliminary descriptive analysis involving the
comparison of median, mean, and upper range
concentrations between sample sets considered
site-related and background;

� Parametric statistical comparison methods in-
volving the comparison of one or more para-
meters of the distribution of site samples with
corresponding parameters of the (assumed or
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sampled) background distribution, such as
Gosset’s Student t-test or Cochran’s Approxi-
mation to the Behrens-Fischer Student t-test; or

� Nonparametric tests, such as the Wilcoxon Rank
Sum test (on a case-by-case basis). 

Once a test has been selected, the assessor must
consider several questions:

� What should the null and alternative hypotheses
be? What are we testing? What are we trying to
prove or disprove about the site and background?

� Should the test be one-tailed or two-tailed?
Should we ask whether the site and background
are from the same population, or should we focus
on whether one is more contaminated than the
other?

� What confidence level should be used? At what
“cut-off” point do we accept or reject the
hypothesis?

5.4.2 Examples

It may be easiest to explore these questions by using
an example. Suppose we have an area that meets our
criteria for local background (unaffected by site
operations). The data from this area for Chemical X
(mg/kg) are as follows:

66  67  68  68  69  69  69
70  70  70  71  71  71  72
72  72  72  73  74  74  75

These data were collected randomly and are normally
distributed. There are 21 measurements (n = 21),
with an average of 70.6 mg/kg and a standard
deviation of 2.37 mg/kg. 

We also have data from an on-site process area.
These data for Chemical X (mg/kg) are as follows:

62  63  64  65  66  68  68
69  69  70  71  71  72  72
72  73  74  75  77  78  80

These data were collected randomly and are
normally distributed. There are 21 measurements (n
= 21), with an average of 70.4 mg/kg and a standard
deviation of 4.86 mg/kg. 

We can see that the background and on-site areas
appear to be similar, but some of the on-site data
exceed the background data. We would like to be
able to state with a given level of confidence
whether the data are essentially from the same
population, or not. If we use the t test to compare the
true means of these data sets, we could test the
hypothesis that the background mean and the site
mean are essentially equal (H0, the null hypothesis).
If H0 is not true, then we would support the
alternative hypothesis that the means are not equal.
This is a two-tailed test, because H0 could be
rejected if the site mean is greater than the
background mean or if the site mean is less than
background mean.

Example 1: H0: µs = µb

HA: µsg µb

(Note that this is a two-tailed version of Test Form
1.) Using the equations in EPA’s QA/G-9, Guidance
for Data Quality Assessment13, for t, we find that t
= 0.1693. At 40 degrees of freedom14, for a two-
tailed test, our t falls below the t of 0.681, where .
= 0.5. Therefore, if we had chosen an . of 0.01 (99
percent confidence), 0.05 (95 percent confidence),
or 0.1 (90 percent confidence), we would not reject
our null hypothesis. Only if we were testing at less
than 50 percent confidence would we reject H0. 

Although the t-test is specifically designed for the
normal distributions used in this simplified example,
other tests also may be used to compare these data
sets. If we consider a nonparametric comparison of
these data using a one-tailed version of Test Form 1,

Example 2: H0: µs � µb

HA: µs > µb,

the WRS test statistics are Ws = 445 and Wb = 458
with n = m = 21. The nearly equal sums of ranks
indicates that the two distributions have similar
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locations, and H0 cannot be rejected in favor of HA.
In this example, the site mean is only slightly smaller
than the background mean, so the inconclusive test
results are not unexpected. 

In other situations, the site mean may exceed the
background mean although the test indicates that
there is no evidence for rejecting the hypothesis that
the site is clean. When using Background Test Form
1, the confidence level of the test determines the rate
of Type I decision errors (false rejection of the null
hypothesis) while the sample size determines the rate
of Type II decision errors (false acceptance of the
null hypothesis). Hence, although a level-. test may
indicate that there is no statistical evidence for
rejecting the null hypothesis that the site is clean, it
is important to examine the retrospective power of
the test to determine if the data sets have sufficient
power to reject the null hypothesis when it is false. If
the power is inadequate, then reports of the test
results should indicate that the data had insufficient
power to determine if the site exceeds background or
not. When using Test Form 1, the higher the
confidence limit, the more likely this test is to find
that the site is clean (from the same population as
background).  Choosing the rejection range for the
hypothesis involves balancing both kinds of error.

Suppose we want to compare our background data set
with another on-site process area. The data for
Chemical X (mg/kg) are as follows:

56  58  60  62  66  67   68
70  72  73  75  76  81   82
84  85  87  90  91  92 103

These data were collected randomly and are normally
distributed. There are 21 measurements (n = 21),
with an average of 76.1 mg/kg and a standard
deviation of 12.68 mg/kg. 

Is this area significantly different from background?
The arithmetic mean is 76.1 mg/kg, compared to the

background mean of 70.6 mg/kg. But is this
difference truly significant? After all, the mean of
the first process area, 70.4 mg/kg, was different
from the background mean. According to the t test,
however, we did not find the difference of 0.2
mg/kg to be significant at the 80-99 percent
confidence levels. What about the second process
area?

Suppose we decide that what we are really
interested in is whether the site is dirty (above
background). Instead of a 2-tailed test, we could
perform a 1-tailed test:

Example 3: H0: µs > µb

HA: µs < µb

(Note that this is Test Form 2 with S = 0.) This test
is 1-tailed because the rejection region is only on
one side of the distribution; that is, we are only
interested in whether the site is greater than the
background.

For comparison, the nonparametric WRS test is
applied by ranking the two data sets in a single list,
then summing the ranks for the site and background
measurements separately. The WRS test statistics
for this test are Wb = 395.5 and Ws = 507.5. Note
that Wb + Ws = 903 = (n+m)(n+m+1)/2. The higher
sum of ranks for the site measurements indicates
that the site distribution exceeds the background
distribution, indicating a very small likelihood of
rejecting the null hypothesis. To conduct a WRS test
using this pair of hypotheses, the sum of the
background ranks (Wb) is compared to the critical
value for the test, and the null hypothesis is rejected
if Wb > Wcrit. The test requires that the background
ranks be significantly higher than those for the
onsite data. The critical values for the WRS test are
502.4 at the 90 percent confidence level and 516.9
at 95 percent confidence for n = m = 2115.  

To use the normal distribution theory correctly, for
a 1-tailed t test, with 40 degrees of freedom, the t of
-1.95 is calculated for the background mean minus
the site mean. This t falls between the 95 percent
and 97.5 percent confidence levels. If we were

In general, EPA recommends a minimum confi-
dence limit of 80 percent and a maximum
confidence limit of 95 percent.
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testing at 80 percent or 95 percent confidence, we
would reject H0 and find that the site is less than or
equal to background—in other words, “clean.” At 99
percent confidence, H0 could not be rejected. In this
case, therefore, a lower confidence limit seems to
increase the chances of finding that the site is clean,
where in our earlier tests we found that a lower con-
fidence limit decreased the chances of considering
the site clean. Why is this? 

The difference is in the setup of the hypotheses. In
the first case (examples 1 and 2), the null hypothesis
was that the site and background were from the same
population (the site was clean). In the later case, the
null hypothesis was that the site mean exceeded the
background mean (the site is dirty). In essence, we
have shifted the burden of proof. If we are really
interested in whether the site is dirty (greater than
background), then our last test could have looked at
these hypotheses:

Example 4: H0: µs < µb

HA: µs > µb

(Note that this is a one-tailed version of Test Form
1.) Using the site mean minus the background mean
for this test, we derive a t of 1.95. At the 80 percent
confidence level, we would reject H0 and find that the
site is dirty. At the 95 percent confidence level and
above, we would accept H0 and find that the site is
clean because the data are insufficient to support this
higher level of confidence demanded for rejection.
Once again, with Test Form 1, a lower confidence
level results in a more conservative approach to
environmental protection.

There is another problem, besides burden-of-proof,
with Example 3. As discussed in Chapter 3, the null
hypothesis that there is a substantial difference (Test
Form 2, û > 0) should only be tested if some minimal
difference (S) is specified. This is because the null
hypothesis H0: û > 0 (i.e., H0: µs > µb) will be rejected
only if the site mean is significantly below the
background mean. In a more typical case, the site
mean may be almost equal to or slightly below the
background mean, and the null hypothesis will only
be rejected when a large number of samples is

collected to reduce the uncertainty to below the
magnitude of the difference in means.

Using a one-tailed Test Form 2, we can test whether
the site exceeds background by more than S using
the hypotheses:

Example 5: H0: µs � µb + S
HA: µs < µb + S

Using a substantial difference of S = 12 (approxi-
mately 1/6 of background) for the t-test of these
hypotheses, we obtain the WRS test statistics Wb+S

= 521 and Ws = 382, indicating at first glance that
the site distribution is considerably lower than the
background distribution plus 12. As noted above,
the critical values for the WRS test are 502.4 at the
90 percent confidence level and 516.9 at 95 percent.
Therefore, the null hypothesis that the site exceeds
background by more than S is rejected at either level
of confidence. For this test, the confidence level
should be at least 80 percent; for a more conserva-
tive test, use higher levels of the confidence range.

5.4.3 Conclusions

Now we return to our original three questions.
Exhibit 5.7 also summarizes this information.

� What should the null and alternative hypotheses
be?

� Should the test be one-tailed or two-tailed?
� What confidence level should be used? 

To determine whether the site and background are
from the same population, these hypotheses can be
used in a two-tailed Test Form 1:

H0: µs = µb

HA: µs g µb

For this test, the confidence level should be at least
80 percent but no more than 95 percent. For a more
conservative test, use the lower end of the confi-
dence range.

To determine whether the site is significantly
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What to test: H0 HA Recommended alpha Rejection criteria

H0: site and background are
from the same population;
vs.
HA: site and background are
from different populations
(Two-tailed, Test Form 1)

µs = µb µs g µb 80-95% confidence (. =
0.2 to 0.05)
[More conservative: . =
0.2]

For 2-sided t test, e.g.,
reject H0 if t > t

./2 or if
t < -t

./2

H0: site is less than or from
the same population as
background; vs.
HA: site is greater than
background 
(One-tailed, Test Form 1)

µs � µb µs > µb 80-95% confidence (. =
0.2 to 0.05)
[More conservative: . =
0.2]

For 1-sided t test, e.g.,
reject H0 if |t| > t

.

For 1-sided t test, e.g.,
reject H0 if t > t

.
*

H0: site is greater than
background + S; vs.
HA: site is less than or from
the same population as
background + S 
(One-tailed, Test Form 2)

µs � µb+S µs < µb+S 80-95% confidence (. =
0.2 to 0.05)
[More conservative: . =
0.05]

For 1-sided t test, e.g.,
reject H0 if |t| > t

.
 

For 1-sided t test, e.g.,
reject H0 if t < -t

.
*

* Assuming the test statistic, t, is calculated using site mean minus background mean (or background mean + S, for
Test Form 2) in the numerator 

Exhibit 5.7 What to test.

greater than background, these hypotheses can be
used in a one-tailed Test Form 1:

H0: µs �µb

HA: µs > µb

For this test, the confidence level should be at least
80 percent; for a more conservative test, use the
lower end of the confidence range and require
adequate power.  

If testing the hypotheses in reverse—Test Form 2—to
show whether the site is greater than background + S,

use a higher confidence level, such as 95 percent,
and specify a substantial difference S. (See Appen-
dix for guidance on choosing S.) To determine
whether the site exceeds background by more than
S, these hypotheses can be used in a one-tailed Test
Form 2:

H0: µs � µb + S
HA: µs < µb + S

For this test, the confidence level should be at least
80 percent; for a more conservative test, use higher
levels of the confidence range. 
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Document: Verification of Soil Remediation. Revision 1. http://www.deq.state.mi.us/wmd/docs/vsr.html.

6. J.L. Devore, 2000. Probability and Statistics for Engineering and the Sciences, 5th Ed., Duxbury Press,
Pacific Grove, California.
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8. In general, the use of “non-detect” values in data reporting is not recommended. Wherever possible, the
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trations should be reported for data below the detection limit, even if these estimates are negative,
because their relative magnitude compared to the rest of the data is of importance. 
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with different detection levels.
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CHAPTER NOTES
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13. U.S. EPA, 2000, Guidance for Data Quality Assessment: Practical Methods for Data Analysis, Op. Cit.,
Section 3.3.1.1.

14. In this context, degrees of freedom (n - 1) is the number of independent observations (“n”) minus the
number of independent parameters estimated in computing the variation. The shape of the t-distribution
curve depends upon the number of degrees of freedom. Distributions with fewer degrees of freedom have
heavier tails.

15. Most readily available tables for the WRS test only extend up to sample sizes of n = m = 20. Critical
values for the WRS test when n and m exceed 20 may be calculated from the large sample
approximation:

Wcrit = m(N+1)/2 + z
.
[ nm(N + 1)/12 ]½ 

where N = n + m and z
.
 is the 100(1 - .)th percentile of the standard normal distribution. The first term

is the expected value of the sum of ranks W, calculated under the assumption that the null hypothesis
is true. The second term is a standard normal variate times the standard deviation of W, under the same
assumptions. The first factor in the expectation term m represents the number of ranks that were
summed, each having expectation (N+1)/2 under the equality assumption included in the null hypothesis.
Note that the second factor in the first term “(N+1)” is misprinted as a factor of “n” in the instructions
for applying the WRS test with a large sample approximation Box 3-22 of EPA QA/G-9, QA00 Version
dated July, 2000. The correct formula above is not symmetric when n and m are exchanged. 
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ADDENDUM

POLICY CONSIDERATIONS FOR THE
APPLICATION OF BACKGROUND DATA IN RISK

ASSESSMENT AND REMEDY SELECTION

[In preparation.]
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APPENDIX

ISSUES REGARDING BACKGROUND
COMPARISONS FOR

SUPERFUND ASSESSMENTS: “S” VALUE

A.1 Precedents for Selecting a
Background Test Form

When comparing the two forms of background tests,
it is important to distinguish between the selection
of the null hypothesis, which is a burden-of-proof
issue, and the selection of an appropriate value for
a “substantial difference.” It is also important to
distinguish between the value that characterizes a
“substantial difference over background” and the
appropriate risk-based “action level” for the
chemical of concern. 

Existing guidance in the data quality objectives
(DQO) process for choosing the null hypothesis has
focused on the burden-of-proof, when the contamin-
ant concentration is to be compared to a fixed, risk-
based action level, L. The choice of Test Forms for
this type of decision includes either

a) H0: X < L vs. HA:    X > L
or

b) H0: X > L vs. HA:    X < L,

where X represents the parameter of interest for the
distribution of contaminant concentrations in con-
taminated areas. Hypothesis test a compares the site
concentrations to the action level using a null
hypothesis that the site does not exceed the action
level and an alternative hypothesis that the site
exceeds the action level. Hypothesis test b is the
opposite of test a, using a null hypothesis, the site
exceeds the action level. Background issues are not

addressed directly in this framework.

One way to address background comparisons is to
reformulate the hypotheses using the difference
(delta—û) between the distribution of contaminant
concentrations and background:

a') H0: û < S vs. HA:   û > S
and

b') H0: û > S vs. HA:   û < S.

In hypothesis tests a' and b', concentrations in
contaminated areas and in background locations are
compared to determine if there is or is not a substan-
tial difference between the two areas. Test a' uses
the null hypothesis that the site does not exceed
background by more than a substantial difference,
while the opposite test b' uses the null hypothesis
that the site exceeds background by more than a
substantial difference (S). Approaches for selecting
a value for S are addressed in the following section.
Note that Test Form b' is the one discussed in
Section 3.2.2 (Background Test Form 2); see note 6
following Chapter 3.

Background Test Form 1 focuses interest on com-
parisons using a “substantial” difference of S = 0. In
this case, the two alternative tests are

a") H0: û < 0 vs. HA:   û > 0
and

b") H0: û > 0 vs. HA:   û < 0.
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Background Test Form 1 (Section 3.2.1) is identical
with test a". This discussion demonstrates that the
two background tests addressed in this paper are not
opposite forms of the same test in the same sense
that tests a and b are opposite forms of the same test
with the same threshold. Since the guidance
reviewed in this section compares opposite forms of
tests with the same action level, the guidance does
not contain a direct recommendation for choosing
between Test Forms 1 and 2.

EPA QA/G-91 (Section 1.2) provides the following
guidance on the selection of an appropriate null
hypothesis in a choice between Test Forms a and b:

The decision on what should constitute the null
hypothesis and what should be the alternative is
sometimes difficult to ascertain. In many cases,
this problem does not arise because the null and
alternative hypotheses are determined by speci-
fic regulation. However, when the null hypothe-
sis is not specified by regulation, it is necessary
to make this determination. The test of hypothe-
sis procedure prescribes that the null hypothesis
is only rejected in favor of the alternative,
provided there is overwhelming evidence from
the data that the null hypothesis is false. In
other words, the null hypothesis is considered to
be true unless the data show conclusively that
this is not so. Therefore it is sometimes useful to
choose the null and alternative hypotheses in
light of the consequences of possibly making an
incorrect decision between the null and
alternative hypotheses. The true condition that
occurs with the more severe decision error (not
what would be decided in error based on the
data) should be defined as the null hypothesis.
For example, consider the two decision errors:
“decide a company does not comply with
environmental regulations when it truly does”
and “decide a company does comply with
environmental regulations when it truly does
not.” If the first decision error is considered
[the] more severe decision error, then the true
condition of this error, “the company does
comply with the regulations” should be defined
as the null hypothesis. If the second decision

error is considered the more severe decision
error, then the true condition of this error, “the
company does not comply with the regulations”
should be defined as the null hypothesis.

For background comparisons, that guidance may be
extrapolated. When deciding between Test Forms a"
and b", there are two possible decision errors: 

 (i) decide the site exceeds background when it
truly does not; and

 (ii) decide the site does not exceed background
when it truly does. 

Decision error (i) occurs when a “clean” site is
wrongly rejected. If decision error (i) is more
serious than decision error (ii), and if the choice is
between tests a" and b" with a substantial difference
of 0, then Background Test Form 1 (a") should be
selected.

When deciding between Test Forms a' and b', there
are two possible decision errors: 

(i) decide the site exceeds background + S
when it truly does not; and

(ii) decide the site does not exceed background
+ S when it truly does. 

Decision error (ii) occurs when a truly contaminated
site goes undetected. If decision error (ii) is

The two Background Test Forms differ both in
terms of burden of proof and in the choice of a
substantial difference:

� Test Form 1 uses a conservative value for a
substantial difference of S = 0, but relaxes
the burden of proof by selecting the null
hypothesis that the contaminant concen-
trations on site are indistinguishable from
background. 

� Test Form 2 requires a stricter burden of
proof, but permits a larger value for a
substantial difference. 
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considered more serious than error (i) and the choice
is between tests a" and b" with a substantial differ-
ence of S, then Background Test Form 2 should be
selected. Note that this logic does not provide a
direct comparison of the two forms of background
tests considered here, but does indicate situations
when Test Forms 1 or 2 may be recommended over
their respective opposites.

Chapter 6 of EPA QA/G-42 is more succinct and
definitive for deciding between Test Form a and b:

Define the null hypothesis (baseline condition)
and the alternative hypothesis and assign the
terms “false positive” and “false negative” to
the appropriate decision error. In problems that
concern regulatory compliance, human health,
or ecological risk, the decision error that has
the most adverse potential consequences should
be defined as the null hypothesis (baseline
condition). In statistical hypothesis testing, the
data must conclusively demonstrate that the null
hypothesis is false. That is, the data must
provide enough information to authoritatively
reject the null hypothesis (disprove the baseline
condition) in favor of the alternative. Therefore,
by setting the null hypothesis equal to the true
state of nature that exists when the more severe
decision error occurs, the decision maker
guards against making the more severe decision
error by placing the burden of proof on demon-
strating that the most adverse consequences will
not be likely to occur. 

This suggests that environmental concerns are not
like the jury trial process, and that the “innocent
until proven guilty” assumption is an environ-
mentally risky approach. From this viewpoint, a
more protective approach would be to presume guilt,
and demand proof of innocence: “guilty until proven
innocent.” Remember that this comparison assumes
that opposite forms of the same test (a and b) are
being evaluated. Extrapolation of this logic to the
background problem would indicate that Test Form
2 is preferred over its true opposite, but Test Form
1 is not preferred over its opposite.

EPA guidance3 adopts a conservative approach by
stating that when the results of the investigation are
uncertain, erroneously concluding that the sample
area does not attain the cleanup standard is prefer-
able to concluding that the sample area attains the
cleanup standard when it actually may not. Again
the recommended approach favors protection of
human health and the environment. 

A.2 Options for Establishing the
Value of a Substantial Difference

Selection of an appropriate value to represent a
substantial difference when testing for differences
between concentrations in contaminated areas and
background areas depends on the intended applica-
tion of the test and a variety of factors. These factors
include site and background variability and approp-
riate cleanup goals.

In this document, the term “substantial difference”
(S) is defined as the difference in mean concentra-
tion in contaminated areas over background levels
that presents a “substantial risk.” Alternatively, S
may represent a selected “not-to-exceed” action
level that is appropriate for the decision at hand. S is
measured in concentration units above the mean
background concentration. The decision to use a
specific value for a substantial difference may be
based on direct risk assessment, a generic regulatory
value, or other level selected to reflect site-specific
conditions. 

In situations where regulatory requirements indicate
that contamination at or below background concen-
trations presents an unacceptably high risk, it is not
possible to define a reasonable level for a substan-
tial difference. The methodologies presented in this
document are not appropriate for analysis of these
unusual situations.

Background comparisons may be conducted at
various stages of site characterization and remedia-
tion cycle. In the characterization stage, areas with
some likelihood of contamination may be compared
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to background areas to determine if contamination
is present in excess of background levels. For
example, the goal at this stage may be to determine
the areal extent of contamination on a large site. The
site is divided into sub-units that are compared to
background to determine if contamination is present
in the sub-unit. At this stage, Background Test Form
1 is useful for determining if the difference between
the site mean and the background mean is signifi-
cantly greater than zero. An upper bound for the
minimum detectable difference (MDD) of the test is
set by determining a value of the substantial differ-
ence S which will represent a threshold value for
identifying possibly contaminated sub-units. 

Later in the site evaluation process, background
comparisons may be used to determine if a sub-unit
with known contamination has been sufficiently
remediated. At this stage, Background Test Form 2
is useful to demonstrate that the remediation was
successful. If the goal of the remediation is to
reduce contamination to near-background levels,
than an appropriate value of S is selected that will
represent the maximum amount by which a remedia-
ted sub-unit may exceed background. 

A.2.1 Proportion of Mean Background
Concentration

One choice for selecting a value of S is to use a
specified proportion of typical mean background
concentrations for the contaminant of concern:

S = rMb

where Mb is the mean background concentration and
r is the specified proportion. This choice may be ap-
propriate for determining if contamination exists in
a sub-unit, or if a sub-unit has been remediated suc-
cessfully. There is no theoretical reason for restric-
ting r to proportions less than 1, if background
concentrations are far below the level that presents
a substantial risk. Values of r near 1 may require a
high number of samples, because the MDD for the
test should be less than S. 

The required sample size is determined by MDD/1,

where 1 is the standard deviation of the concentra-
tions in contaminated areas. Even if the area has
little or no contamination, then 1 will be approxi-
mately as large as the background standard devia-
tion, which is usually at least as large as the
background mean. Hence, if r is less than 1, then it
is very likely that MDD/1 also is less than 1. If there
is contamination in the contaminated area, then
MDD/1 will be much less than 1.

A.2.2 A Selected Percentile of the Back-
ground Distribution

Due to the high variability in background concen-
trations of many chemicals, defining S as a fraction
of the mean background concentration may not be
appropriate. Another choice for a value to represent
a substantial difference is to use a specified percen-
tile of the distribution of background concentrations
for the contaminant of concern:

S = (Bp - Mb)

where Bp is the pth percentile of the background
distribution and Mb is the mean background
concentration. Values of p less than 0.85 may
require a high number of samples, because the MDD
for the test should be less than S. This is because the
85th percentile is approximately 1 standard deviation
above the background mean. When there is little or
no contamination in the contaminated area, S is
approximately equal to 1, and hence, MDD/1
usually will be near 1. If there is contamination in
the contaminated area, then MDD/1 will be much
less than 1.

A.2.3 Proportion of Background Variability

A third choice for selecting a value to represent a
substantial difference is to use a specified propor-
tion of variance of background concentrations for
the contaminant of concern:

S = r1b

where 1b is the standard deviation of background
concentrations and r is the specified proportion.
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This choice for a substantial difference is closely
related to the use of a percentile of the background
distribution discussed in Section A.3.2.

Areas with relatively high mean background con-
centrations generally also have high variance of
background. Values of r less than 1 may require a
high number of samples,  for the reasons noted in
Section A.2.2.

A.2.4 Proportion of Preliminary Remediation
Goal

The concept of calculating risk-based soil concen-
trations to serve as reference points for establishing
site-specific cleanup levels was introduced in
RAGS. If a preliminary remediation goal (PRG) is
available for the contaminant of concern, the value
of S may be based on a proportion of the PRG:

S = r · PRG 

A proportion less than 1 may be required, because
the total risk will be the sum of the incremental risk
due to S plus the risk due to background concen-
trations of the contaminant. If the PRG is less than
the mean or standard deviation of background, a
high number of samples may be required for conclu-
sive test results.

A.2.5 Proportion of Soil Screening Level

If a PRG is not available for the contaminant of
concern, a risk-based value of S may be based on the
soil screening level (SSL) for the contaminant.4 

S = r · SSL 

SSLs are based on a 10-6 individual risk for carcino-
gens and a hazard quotient of 1 for noncarcinogens.
SSLs were established to identify the lower bound
of the range of risks of interest in decision making,
and are not cleanup goals. SSL target risks should
be adjusted to reflect established cleanup level
targets. Again, a proportion less than 1 may be
required, because the total individual risk will be the
sum of the incremental risk due to S plus the risk

due to background concentrations of the contamin-
ant. If the (adjusted) SSL is less than the mean or
standard deviation of background, a high number of
samples may be required for the background
comparison.

A.3 Statistical Tests and Confidence
Intervals for Background
Comparisons

This section provides supplementary material on the
use of hypothesis tests and confidence intervals for
conducting background comparisons. The science of
statistics is often divided into two parts: estimation
theory and hypothesis testing. Estimation theory
includes the calculation of confidence intervals as
estimates for population parameters, while hypothe-
sis testing focuses on the use of statistical tests to
accept or reject hypotheses concerning these para-
meters. Although only the use of hypothesis tests
has been discussed in the main text, the one-to-one
correspondence between hypothesis tests for û con-
ducted at level . and the estimated 100(1-.) percent
confidence interval for û permits the use of either
method to conduct a background comparison. While
the emphasis of this section is technical in nature,
mathematical proofs of results have been omitted. 

When using Test Form 1, a one-sided, level-.
hypothesis test of the null hypothesis û � 0 will only
reject the null hypothesis if we conclude that û is
significantly greater than 0 by comparing the test
statistic to the tabulated critical value. The critical
value is selected to ensure that the probability that
the test statistic will exceed the critical value by
chance alone is less than .. A similar conclusion is
reached when the lower bound of the one-sided,
100(1-.) percent confidence interval for û is greater
than zero. There are two ways to reach the same
conclusion, that û is significantly greater than zero.
A two-sided confidence interval for û is often more
useful than one-sided confidence intervals to sum-
marize the information about û that is contained in
the data. In this case, a two-sided, 100(1-.) percent
confidence interval for û will correspond to a one-
sided, level-./2 hypothesis test for û.
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A.3.1 Comparisons Based on the t-Test

Background comparisons based on the t-test rely on
the assumption of a normal distribution for the data,
or for a transformation of the data. Hypotheses are
tested using the t-statistic, which follows the Student
t-distribution. Similar results are obtained by esti-
mating a confidence interval for û = µy - µx, where
µy is the mean concentration in the contaminated
area and µx is the mean background concentration.

NORMAL THEORY, CASE 1: EQUAL BUT UNKNOWN

VARIANCES5

For simplicity, we first assume that the site data (Y1,
…, Yn) and background data (X1, …, Xm) are
independent random samples from normal distribu-
tions with the same variance, 12, but with different
means, µy and µx, respectively:

Yj ~ N [ µy, 1
2 ]

and
Xj ~ N [ µx, 1

2 ].

In this case, the test statistic for the two-sample t-
test is based on the difference in the estimated
means, My and Mx, where

My = * Yj /n ~ N [ µy, 1
2/n ]

and
Mx = * Xj / m ~ N [ µx, 1

2/m ].

A pooled estimate for 12, the common variance of
the distributions, is

sp
2 = [ � (Yj - My)

2 + � (Xj - Mx)
2 ] / (n + m - 2).

The test statistic for conducting a t-test using
Background Test Form 1 is

t1 = (My - Mx) / s
*

where
s* = sp(1 / n + 1 / m )½.

In Background Test Form 1, the test statistic t1 has
the standardized Student-t distribution with n+m-2
degrees of freedom if µy = µx (û = 0). Let t1-.

represent the 100(1-.)th quantile of the Student t-
distribution with n+m-2 degrees of freedom. The
value t1-. is the critical value for the test. If the test
statistic t1 exceeds the critical value t1-., the null
hypothesis in Background Test Form 1 (Ho: û < 0)
may be rejected with 100(1-.) percent confidence.

The test statistic for conducting a two-sample t-test
using Background Test Form 2 is

t2 = (Mx + S - My)/s
*

where the quantity S is a substantial difference. The
test statistic t2 has a standard Student-t distribution
with n+m-2 degrees of freedom when µS = µB + S. If
the test statistic t2 exceeds the critical value t1-., then
the null hypothesis in Background Test Form 2 (Ho:
û > S) may be rejected with 100(1-.) percent
confidence.

A 100(1-.) percent confidence interval for û is an
interval denoted as (û1, û2) that satisfies the require-
ment

Pr{û 1 < û < û 2 } > 1 - .

Here û1 represents the lower limit of the confidence
interval, and û2 represents the upper limit of the
confidence interval. Although one-sided hypothesis
tests were considered above, the desired confidence
interval is two-sided and symmetric, meaning that
there is a probability of ./2 that û will be below this
interval and a probability of ./2 that it will be above
this interval.

If the lower limit of a 100(1-.) percent confidence
interval for û is greater than zero, then the mean in
the contaminated area is significantly greater than
the background mean. This means that a one-sided,
level-./2 test of the null hypothesis H0: û � 0 (Test
Form 1) will reject the null hypothesis. Similarly, if
the upper limit of a 100(1-.) percent confidence
interval for û is less than S, then the difference
between the mean in the contaminated area and the
background mean is significantly less than a
substantial difference. This means that a one-sided,
level-./2 test of the null hypothesis H0: û > S (Test
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Form 2) will reject the null hypothesis.

A symmetric confidence interval for the difference
û = µy - µx is constructed using t1-./2, which repre-
sents the 100(1-./2)th quantile of the Student t-
distribution with n+m-2 degrees of freedom. A
100(1-.) percent confidence interval for û has the
form (û 1, û 2), where the lower bound is

û 1 = (My - Mx) - t1-./2s
*

and the upper bound is

û 2 = (My - Mx) + t1-./2s
*.

Although the distribution of the test statistic for the
two-sample Student t-test is derived based on the
assumption of normal distributions with equal
variances, the test is robust and has demonstrated
good performance when the variances are unequal,
and when the population distributions are not
normal. However, the estimates My, Mx and sp

2 are
sensitive to outliers in either data set. If either or
both data sets contain non-detects, then the test will
be sensitive to most common methods of handling
these values. Confidence intervals derived using the
two-sample test statistic are expected to have similar
properties.

NORMAL THEORY, CASE 2: UNEQUAL, UNKNOWN

VARIANCES6

Now assume that the site data (Y1, …, Yn) and
background data (X1, …, Xm) are independent
random samples from normal distributions with
different means, µy and µx, and different variances,
1y

2 and 1x
2, respectively:

Yj ~ N[ µy, 1y
2 ]

and
Xj ~ N[ µx, 1x

2 ].

Estimates for the sample variances are

sy
2 = �(Yj - My)

2 / (n - 1)
and

sx
2 = �(Xj - Mx)

2 / (m - 1).

An estimate of the approximate degrees of freedom
is

� = 22/b
where

2 = sy
2/n + sx

2/m
and

b = (sy
2/n)2 / (n - 1) + (sx

2/m)2 / (m - 1).

A symmetric confidence interval for the difference
û = µy - µx is constructed using the Student t-
distribution with �* degrees of freedom, where �* is
the closest positive integer to �. Let t1-./2 represent
the 100(1-./2)th quantile of this t-distribution with �*

degrees of freedom. An approximate 100(1-.)
percent confidence interval for û has the form (û 1,
û 2), where the lower bound is

û 1 = (My - Mx) - t1-./22
1/2

and the upper bound is

û 2 = (My - Mx) + t1-./22
1/2

A.3.2 Comparisons Based on the Wilcoxon
Rank Sum Test

The Wilcoxon Rank Sum (WRS)7 test is a nonpara-
metric test for testing whether there is a difference
between the site and background population distri-
butions. The WRS test examines whether measure-
ments from one population tend to be consistently
larger (or smaller) than those from the other
population. The test determines which is the higher
distribution by comparing the relative ranks of the
two data sets when the data from both sources are
sorted into a single list. One assumes that any
difference between the site and background concen-
tration distributions represents a shift of the site
concentrations to higher values due to the presence
of contamination in addition to background. The
WRS test is most effective when contamination is
spread throughout a site. 

Two assumptions underlying the WRS test are: 

 1) Samples from the background and site are
independent, identically distributed random
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samples; and 

 2) Each measurement is independent of every
other measurement, regardless of the set of
samples from which it came. 

The WRS test assumes that the distributions of the
two populations are identical in shape (variance),
although the distributions need not be symmetric. 

The WRS test has three advantages over the t-test
for background comparisons: 

 1) The two data sets are not required to be from a
known type of distribution. The WRS test does
not assume that the data are normally or log-
normally distributed, although a normal distri-
bution approximation often is used to determine
the critical value for the test for large sample
sizes. 

 2) The WRS test is robust with respect to outliers
because the analysis is conducted in terms of
ranks of the data. This limits the influence of
outliers because a given data point can be no
more extreme than the first or last rank. 

 3) The WRS test allows for non-detect measure-
ments to be present in both data sets. The WRS
test can handle a moderate number of non-detect
values in either or both data sets by treating
them as ties.8

Theoretically, the WRS test can be used with up to
40 percent or more non-detect measurements in
either the background or the site data. Such a high
proportion of non-detects indicates that there will be
a large number of ties. In this case, the simple
expediency of assigning all ties the same ranks may
not be adequate. More specific procedures have
been developed to address data sets with a large
number of ties.9 If more than 40 percent of the data
from either the background or site are non-detect
values, the WRS test should not be used. 

The WRS test may be applied to both forms of
background test, indistinguishable from background

or exceed by more than a substantial difference. In
either form of background test, the null hypothesis
is assumed to be true unless the evidence in the data
indicates that it should be rejected in favor of the
alternative. 

The WRS test for Background Test Form 1 is
applied as outlined in the following steps. The site
and background measurements are ranked in a single
list in increasing order from 1 to N, where N = m +
n. All tied values are assigned the average of the
ranks for that group of measurements. All non-
detect values are considered as ties and are assigned
an average rank (if there are a total of t non-detects,
they all are assigned rank (t+1)/2, which is the
average of the first t integers).

The sum of the ranks of the site measurements (Wy)
and the sum of the ranks of the background
measurements (Wx) are sufficient statistics for the
test, where Wy + Wx = N(N + 1)/2. The sum of the
ranks of the site measurements (Wy) is the test
statistic used for Background Test Form 1. To
conduct the test, Wy is compared with w

.
, which is

the critical value for a level-. WRS test for the
appropriate values of n and m10. If Wy exceeds the
critical value for the test, the null hypothesis that the
site is indistinguishable from background (û < 0)
may be rejected with 100(1-.) percent confidence.

The WRS test for Background Test Form 2 is
applied as outlined in the following steps. First, the
background measurements are adjusted by adding
the substantial difference S to each measured
value11. Second, the S-adjusted background data and
the site data are ranked in a single list in increasing
order from 1 to N. Finally, all tied values are
assigned the average of the ranks for that group of
measurements.

The sum of the ranks of the S-adjusted background
measurements (Wx+S) is the test statistic for
Background Test Form 2. If Wx+S is greater than the
critical value for the test, w

.
, the null hypothesis that

the site exceeds background by more than a
substantial difference (û > S) is rejected at the
100(1-.) percent confidence level.
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Nonparametric confidence intervals for û are
derived based on the Mann-Whitney form of the
WRS test (Section 5.3.2). The Mann-Whitney test
statistics are computed from the set of all possible
differences between the site and background data
sets:

{Yi - Xj, I = 1, … , n; j = 1, … , m}.

There are n times m possible differences in this set,
so a computer program may be required to perform
the necessary calculations. Let the symbol Zr (r = 1,
… , nm) represent the rth-ranked difference in the
ordered set of all possible differences between the
site and background data. A symmetric nonpara-
metric confidence interval for û is constructed using

the kth-smallest ranked difference (Zk) and the kth-
largest ranked difference (Znm-k+1) in the set of all
possible differences, where k depends on n, m and
.

12. Thus, a 100 × (1-.) percent confidence interval
for û is a closed interval of the form 

(û 1, û 2) = (Zk, Znm-k+1)
with

k = w
./2 - n(n + 1)/2.

Here, as noted above for the WRS test, w
./2 is the

tabulated critical value for a level-./2 WRS test for
the appropriate values of n and m. This confidence
interval satisfies the requirement

Pr{ û 1 < û < û 2 } > 1 - ..
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