

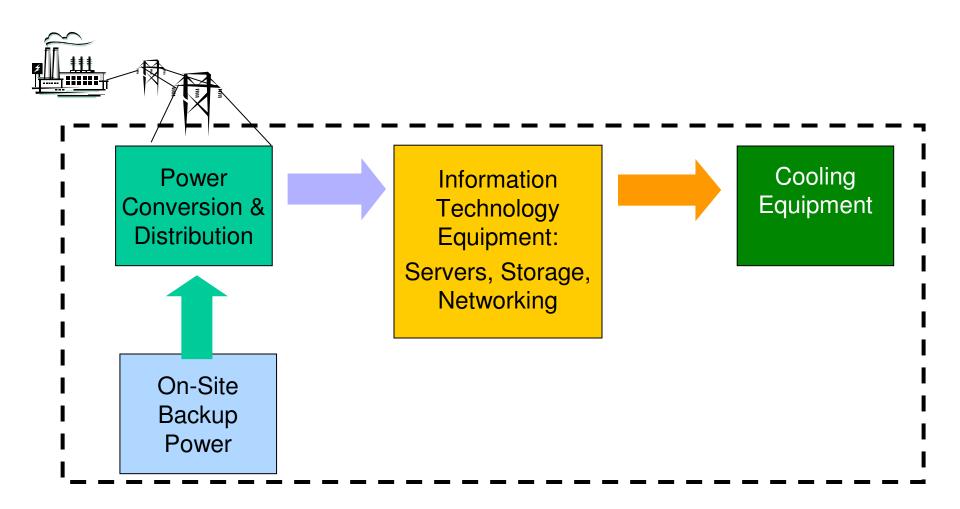
Federal Government Initiatives to Reduce Data Center Energy Use

Andrew Fanara
US EPA ENERGY STAR® Product Development

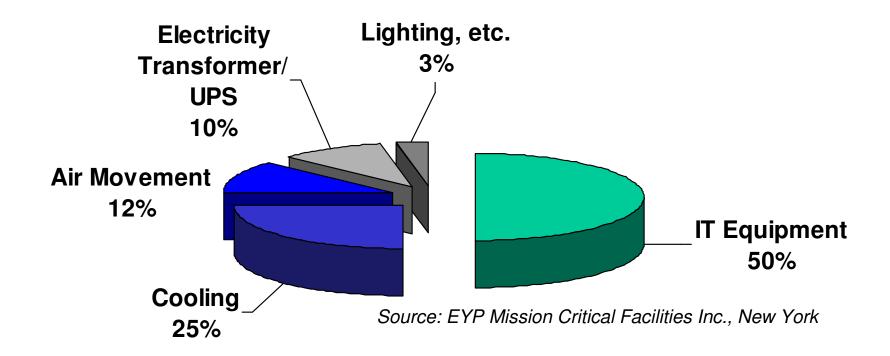
Rich Brown
Lawrence Berkeley National Laboratory

Data Centers are INFORMATION FACTORIES

- Data centers are energy intensive facilities
 - Server racks now designed to carry 25 kW load
 - Surging demand for data storage
 - Typical facility ~ 1MW, can be > 20 MW
 - Tier 3 datacenter ~ 4-5 MW
 - Nationally 1.5% of US Electricity consumption in 2006
 - Could double in next 5 years
- Critical national and global infrastructure
 - Few technology barriers to increased efficiency
 - Few options to go "off the grid" or diversify supply
 - Good candidates for efficiency investments by utilities to reduce peak loads


Recent Data Center Developments

- Significant data center building boom,
 - Power and cooling constraints in existing facilities
 - Growing demand for compute cycles
 - Growing computing performance
 - Commoditized hardware
 - Declining cost of computing


Major Data Center Energy Users

Where Data Center Power Goes

Energy Issues Abound

 Over the next five years, power failures and limits on power availability will halt data center operations at more than 90% of all companies

(AFCOM Data Center Institute's Five Bold Predictions, 2006)

 By 2008, 50% of current data centers will have insufficient power and cooling capacity to meet the demands of high-density equipment

(Gartner press release, 2006)

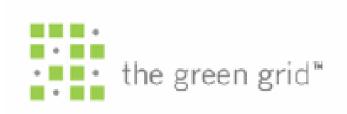
 Survey of 100 data center operators: 40% reported running out of space, power, cooling capacity without sufficient notice

(Aperture Research Institute)

The Rising Cost of Ownership

- From 2000 2006, computing performance increased
 25x but energy efficiency only 8x
 - Amount of power consumed per \$1,000 of servers purchased has increased 4x
- Cost of electricity and supporting infrastructure now surpasses capital cost of IT equipment
- Perverse incentives -- IT and facilities costs separate

Industry Action: Climate Savers


- Global non-profit consortium of industry, business, universities, conservation groups, governments, consumers
- Goals:
 - Accelerate production/distribution of energy efficient computers
 - Increase use of power management tools
- Desired Results:
 - Reduce the computing industry's carbon footprint
 - Lower TCO for computer users
 - Make high efficiency the norm for the industry
- Web site: <u>www.climatesaverscomputing.org</u>

Industry Action: Green Grid

- Global consortium dedicated to developing and promoting energy efficiency for data centers by:
 - Defining meaningful, user-centric models and metrics
 - Developing standards, measurement methods, best practices and technologies to improve performance against the defined metrics
 - Promoting the adoption of energy efficient standards, processes, measurements and technologies

What's the Government's Role?

- Federal agencies (EPA & DOE) can be catalyst
 - Stimulate competition on energy efficiency
 - Foster discussions between key stakeholders
 - Provide key recommendations (EPA Report to Congress)
 - Developing standardized test procedures and metrics to measure energy consumption (e.g., ENERGY STAR)
- Take the lead on best practices and metering of federal datacenters
- Promote initiatives globally (Canada, EU, UK, China, India, Australia)

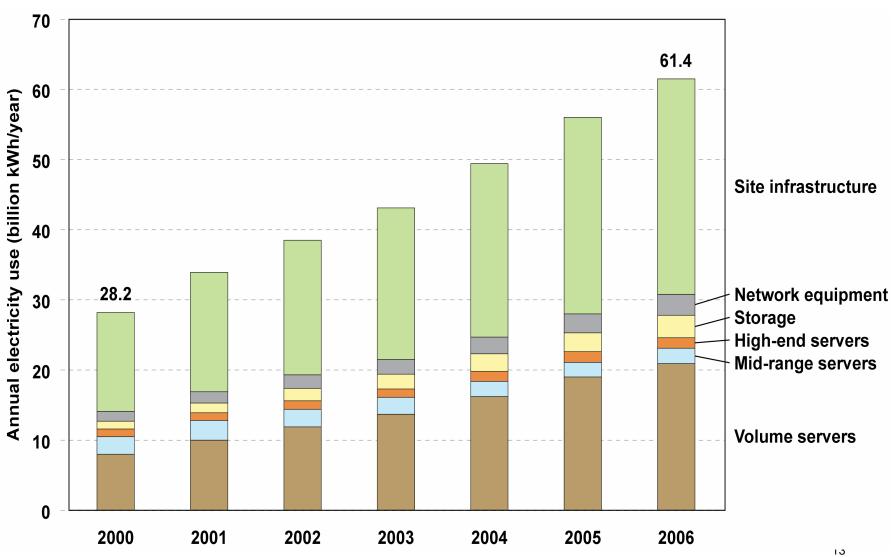
Public Law 109-431: EPA Report

 Purpose: assess energy impacts on and from datacenters, identify energy efficiency opportunities, and recommend strategies to drive the market for efficiency

Goals:

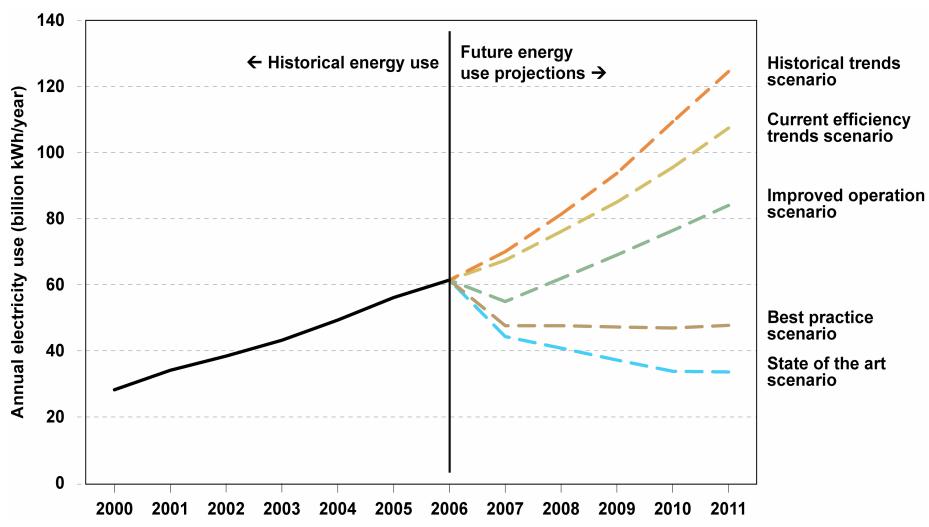
- Inform Congress & other policy makers of important market trends, forecasts, opportunities
- Identify and recommend potential short and long term efficiency opportunities and match them with the right policies
- Identify areas for additional strategic research <u>outside the</u>
 <u>scope</u> of the report

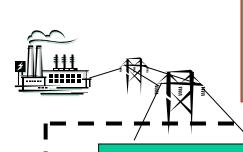
EPA Report Findings



Trends in Data Center Energy Use

- Sector consumed about 61 billion KWh in 2006
 - Equates to ~1.5% total U.S. electricity consumption and ~\$4.5 billion
 - Federal sector: ~6 billion kWh and ~\$450 million
- Projected to increase to 100 billion kWh in 2011
 - Equates to ~2.5% of total U.S. electricity consumption and ~\$7.4 billion


Electricity Use by End-Use 2000 to 2006


Comparison of Projected Electricity Use All Scenarios 2007 - 2011

Energy Efficiency Opportunities Are Everywhere

- Improved hardware
- Software innovations
- Load management

- Better air management
- Move to liquid cooling
- Optimized chilled-water plants
- Use of free cooling

Power
Conversion &
Distribution

Server Load/ Computing Operations Cooling Equipment

- High voltage distribution
- Use of DC power
- Highly efficient UPS systems
- Efficient redundancy strategies

Alternative Power Generation

- On-site generation
- Waste heat for cooling
- Use of renewable energy/fuel cells

Report Findings cont.

Identified Key Barriers to Energy Efficiency

- Lack of efficiency definitions for equipment and data centers
 - Service output difficult to measure, varies among applications
 - Need for metrics and more data: How do we account for computing performance?
- Split incentives
 - Disconnect between IT and facilities managers
- Risk aversion
 - Fear of change and potential downtime energy efficiency perceived as a change with uncertain value and risk

Report Recommendations

- Standardized performance measurements for IT equipment and data centers
 - Development of benchmark/metric for data centers
 - ENERGY STAR label for servers, considering storage and network equipment
- Leadership by federal government
 - Publicly report energy performance of datacenters
 - Conduct energy efficiency assessments in all datacenters in 2 3 years
 - Architect of the Capital, implement server- related recommendations in Greening of the Capital report

Recommendations cont.

Private Sector Challenge

 CEOs conduct DOE Save Energy Now energy efficiency assessments, implement measures, and report performance

Information on Best Practices

- Raise awareness and reduce perceived risk of energy efficiency improvements in datacenter
- Government partner with private industry: case studies, best practices

Research and Development

 Develop technologies and practices for datacenter energy efficiency (e.g., hardware, software, power conversion)

Federal Government Activities

- Benchmark for data centers was core recommendation of the EPA report
 - Provides opportunity to compare and measure impacts of changes made to facility
 - Government can help forge consensus on industry accepted benchmark
 - DOE focusing on data center energy assessments through its Save Energy Now industrial program
 - EPA considering a whole-building ENERGY STAR benchmarking tool for data centers

Federal Government Activities

ENERGY STAR Specification for Servers

- Server energy demand drives DC power & cooling needs
- Goal: Create protocol to measure server energy efficiency to allow fair competition
- Technical specification would have several key elements:
 - Definitions of product types eligible for ENERGY STAR
 - Test procedure for energy efficiency & computing performance
 - Proposed levels to set the bar: near term (i.e. Tier 1) may include power supply efficiency; longer term (i.e. Tier 2, replacing Tier 1) would be a more holistic metric (system efficiency)

ENERGY STAR for Servers

Power Supply Efficiency -- Possible Tier 1

- Why higher efficiency for server power supplies??
 - Common hardware denominator
 - Lower HVAC costs >> 1 to 1.5 kWh
 HVAC savings for every kWh saved at the plug
 - More computing space increase computational density
 - Reduce CO2 emissions [1kWh ~ 1.6 lbs of CO2]
- Test Procedure developed by Electric Power Research Institute (EPRI)
 - Testing and verifying power supply efficiency and reliability performance
 - Developing recommendations for 80 Plus program

Source: Brian Fortenbery, EPRI, Digital Power Forum 2007

ENERGY STAR for Servers

Server Performance Benchmark

- No metric available to compare server energy efficiency
- January 2006 SPEC Power and Performance Committee began development of benchmark for evaluating energy efficiency of servers
- Working prototype has been developed --- final product by the end of 2007
- EPA will review benchmark for possible Tier 2
- More info on progress: www.spec.org/specpower

Next Steps for Servers

- Draft framework discussion document posted for stakeholder review; comment period closed August 31
- September: review of comments and information gathering
- October 31: ENERGY STAR stakeholder meeting to discuss Draft 1 specification requirements
 - Following the Uptime Institute 2007 Charette in Santa Fe, NM
 October 28 @ www.uptimeinstitute.org/charette
- Goal Tier 1 specification finalized by early 2008

	Data Center Need	Federal Role
Standardized Measurements	Metrics to effective use of energy and identify energy efficient components for the data center	EPA ENERGY STAR specifications for data centers and IT equipment DOE assessment of data center efficiency
Leadership by Fed. Government	Real life examples of best practices in efficient data center design with benchmark numbers for comparison	EPA/DOE measure federal data centers and publicly report results Leadership in designing efficient DCs
Private Sector Challenge	Impetus to convince management to improve the efficiency of facilities	EPA/DOE challenges industry and provides an opportunity for companies to compete on efficiency of facilities
Research and Development	Further investigation into methods of increasing the efficiency of data centers	EPA/DOE support for research and development
Information on Best Practices	Examples of currently available technology and solutions to improve data center performance and reduce power usage	EPA/DOE collects information on best practices and makes public for industry

Take Aways

- Rising energy supply / security & climate change concerns
 - Emergence of green economy but standard metrics & energy transparency needed
- Financial and reputational risk associated with status quo
 - Boardrooms, investors, and customers taking notice
 - Energy efficiency should be a first resource in any action plan
- Data centers a key economic and CO2 reduction opportunity
- Stay tuned for EPA & DOE plan to implement recommendations
- Track progress at <u>www.energystar.gov/datacenters</u> and <u>http://hightech.lbl.gov/datacenters.html</u>