
Hydrogen and electricity production using microbial fuel cell-based technologies

> Bruce E. Logan and John M. Regan Penn State University

> > PENNSTATE

Engineering Environmental Institute

Ethanol versus H₂ from Glucose

- Glucose: $\Delta H_c = 2808 \text{ kJ/mol}$
- Ethanol
 - Produce 2 ethanol per glucose by fermentation
 - $2 \times \Delta H_c = 2 \times 1367 \text{ kJ/mol} =>$
- ΔH_c = 2734 kJ/mol

- Hydrogen
 - Produce up to $12 H_2$ per glucose
 - $12 \times \Delta H_c = 12 \times 286 \text{ kJ/mol} =>$
- $\Delta H_c = 3430 \text{ kJ/mol}$

• DOE

- 10-12 mol-H₂/mol-glucose needed to make biological H₂ production feasible (9.6 mol H₂= Δ H_c for 2 ethanol from glucose)

Current sources of H₂ Production Electrolysis 4% Coal 18% **Natural Gas** 48% Heavy oils and naphtha 30%

Energy Utilization in the USA

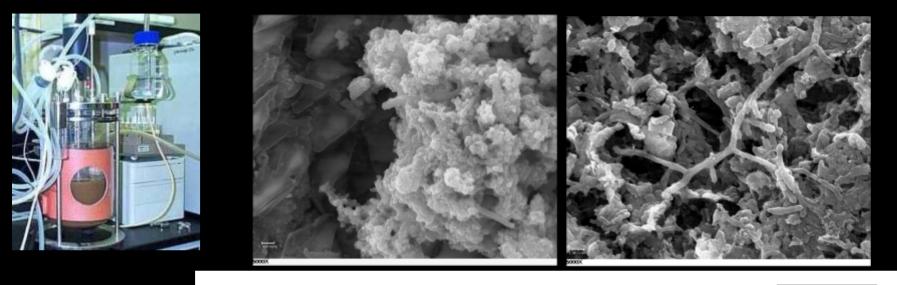
US energy use: 97 quad

US electricity generation: 13 quad

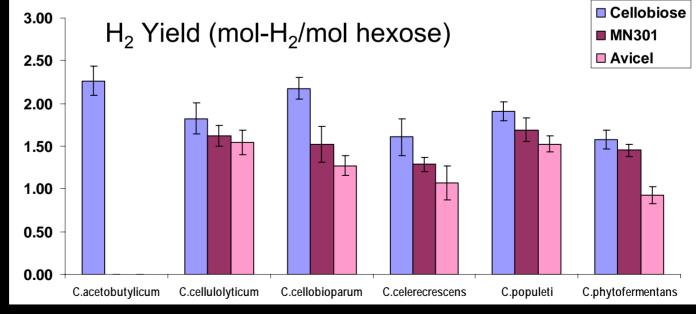
Electricity needed for H₂ transportation:

Via water electrolysis:12 quadUsing the BEAMR process:1.2 quad

97 quad [quadrillion BTUs] = 28,400 TWh(terawatt hours)

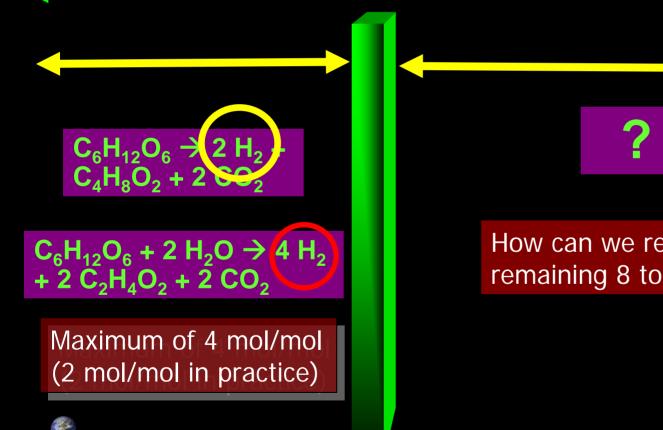


H₂ results primarily from fermentation of sugars



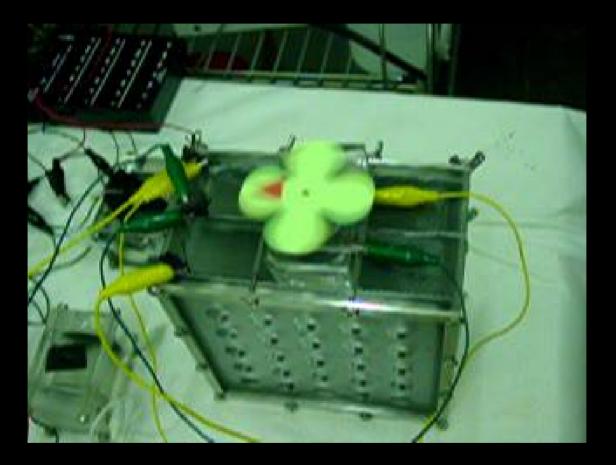

Source: Logan, VanGinkel & Oh Environ. Sci. Technol. (2002)

H₂ can be produced by cellulose fermentation


22

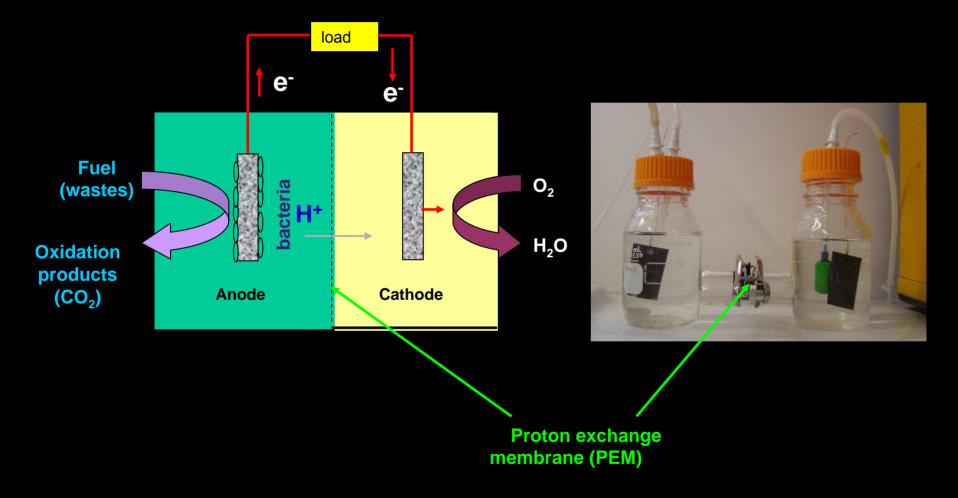
Observation: the "fermentation barrier"

Maximum: 12 mol-H₂/mol-hexose


How can we recover the remaining 8 to 10 mol/mol?

Energy Production using MFC technologies

- Electricity production using microbial fuel cells
- H₂ Production from biomass using the BEAMR process: overcoming the "fermentation barrier"
- A path to renewable energy

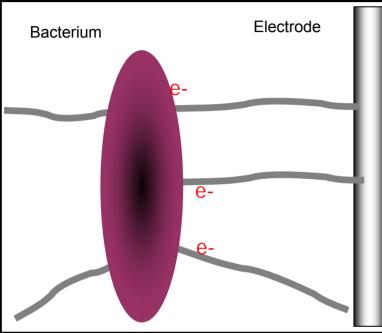


Demonstration of a Microbial Fuel Cell (MFC)

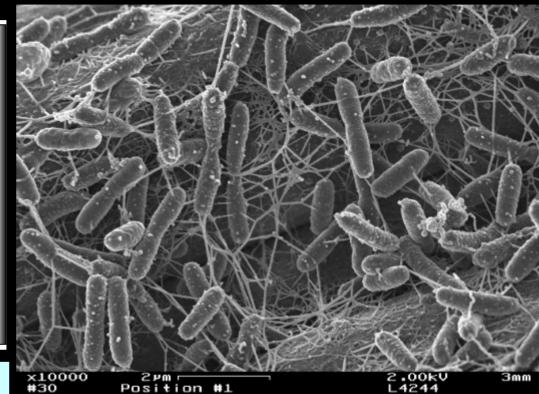
MFC webcam (live video of an MFC running a fan) www.engr.psu.edu/mfccam

Microbial Fuel Cells: Aqueous cathode

Source: Liu et al., Environ. Sci. Technol., (2004)


- Methanogenesis
 - Generation of methane
 - Methanogens
 - Anaerobic digesters
 - Electrogenesis
 - Generation of electricity
 - Exoelectrogens
 - Microbial fuel cells (MFCs)
 - Electrohydrogenesis
 - Generation of H_2 gas
 - Exoelectrogens
 - Bioelectrochemically assisted microbial reactors (BEAMRs)

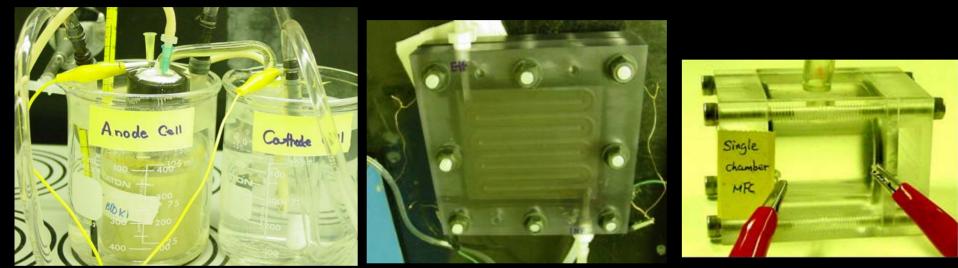
Microbial community analysis

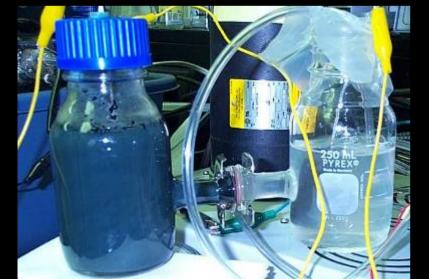

Community Inoculum Reference (substrate) α-Proteobacteria (mainly Actinobacteria) Phung et al. **River sediment** (2004)(glucose+glutamic acid) **River sediment** β-Proteobacteria (related to Leptothrix Phung et al. (2004)(river water) spp.) Logan et al. y-Proteobacteria, 40% Shewanella Marine sediment 2005 affinis KMM, then Vibrio spp. and (cysteine) Pseudoalteromonas sp. Wastewater 36%=unidentified, 25%= β - and 20%= α -Kim et al. (2004)(starch) *Proteobacteria*, and 19%= Cytophaga+Flexibacter+Bacterioides 24%=α-, 7%=β-, 21%=γ- , 21%= δ-Lee et al. Wastewater (2003)(acetate) Proteobacteria; 27%=others

New finding: bacteria use "nanowires"

Bacteria that can transfer electrons directly to the electrode:

- Geobacter sulfurreducens
- Alteromonas sp.
- Shewanella spp.


#30 P 1024 x 960


L4244 L4244-20.TIF

Gorby et al. (2006), PNAS.

System architecture (not microbiology) limits power

Power density is limited by internal (system) resistance

R_{ex}=

R_{in}=

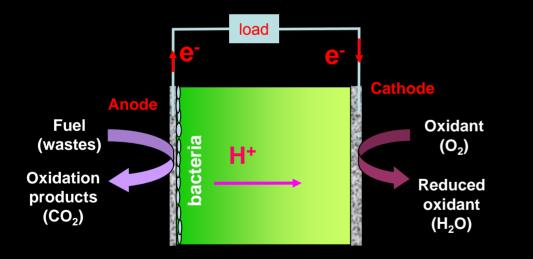
A=

Power: 0.3-3 mW/m²

System resistance: 66,920 Ω

$$P = \frac{OCV^2 R_{ex}}{A(R_{int} + R_{ex})^2}$$

Power: 40 mW/m²

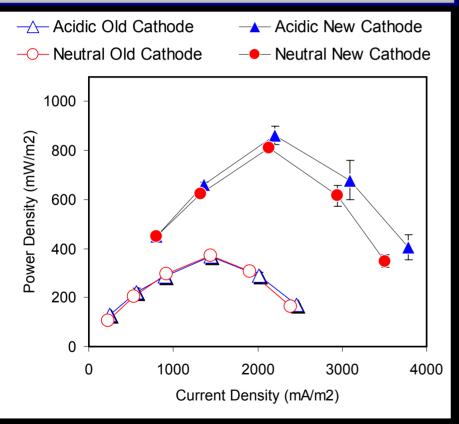

System resistance: 1,756 Ω

- P= Power normalized surface area
- OCV= Open circuit voltage
 - External resistance
 - Internal resistance
 - Electrode projected surface area

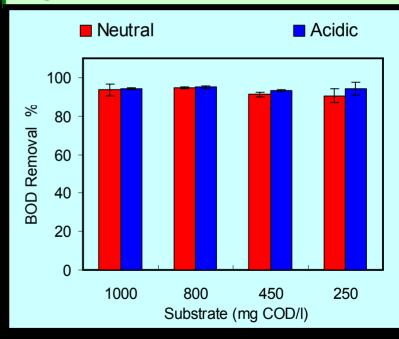
Air Cathode MFC

- Bacteria oxidize organic matter
- Generate electricity from any form of biodegradable organic matter

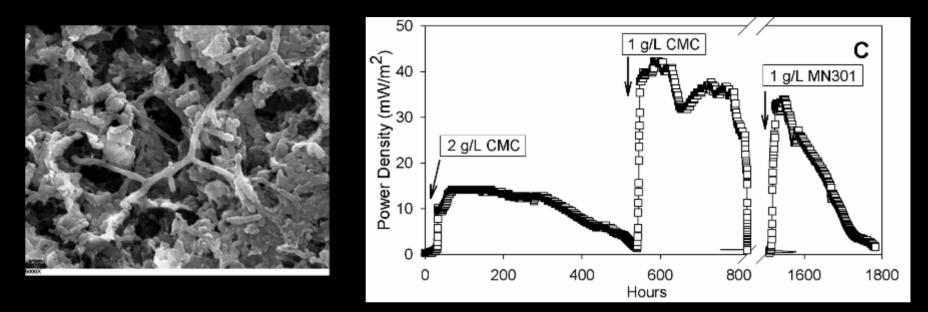
Power production (early studies)



Substrate	Power (mW/m ²)
Glucose	494
Acetate	506
Butryate	309
Protein	269
Domestic	146
wastewater	


Electricity from corn stover hydrolysates

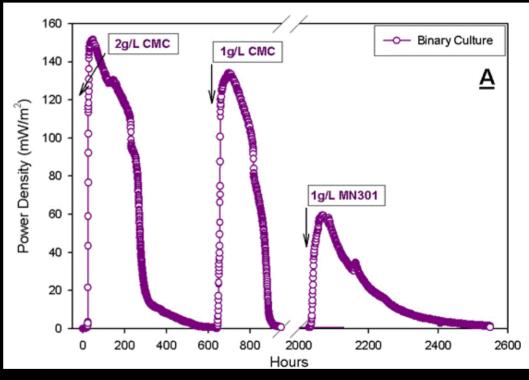
Corn stover: 90% of 250 million tons remains unused in fields (largest source of solid waste biomass in USA)


Maximum Power= 860 mW/m²

~93% removal of biodegradable organic matter

Cellulose is directly used to make electricity

- Electricity produced with two different cellulosic materials
- Inoculum is wastewater (bacteria naturally present in the environment)

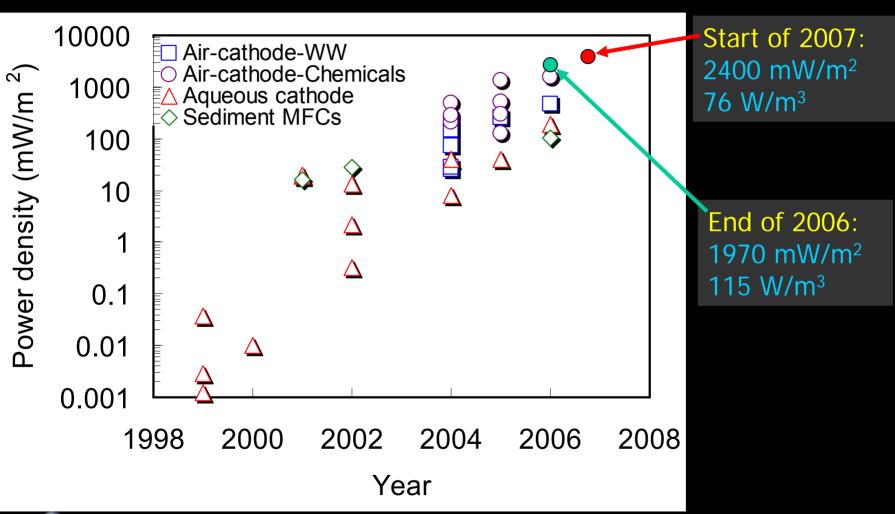


Ren, Ward, and Regan (Submitted)

Defined co-culture can also be used to make electricity from cellulose

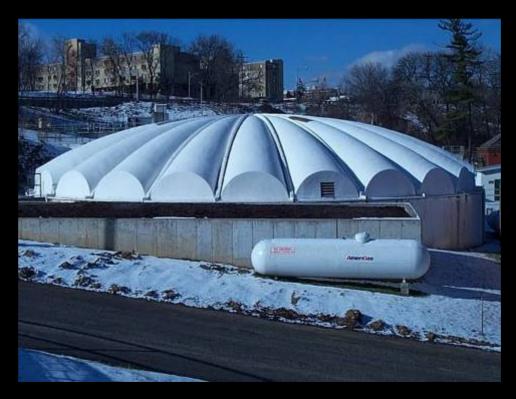
Clostridium cellulolyticum

- Converts cellulose to H₂ and volatile acids
- Can not produce electricity
- Geobacter sulfurreducens
 - Produces electricity from acetate
 - Can not degrade cellulose


Advances in operating conditions and materials selection

Factors affecting performance

- Solution conductivity
- Electrode spacing
- Continuous flow
- Cathode materials
 - Non-precious metal cathode catalyst
 - Diffusion layers for water control
- Anode materials
 - Treatment technique for rapid power generation (high-temperature ammonia gas)


Power production in MFCs is improving

System Scale (Wastewater Treatment)

What will a large scale MFC system of the future look like?

System Scale up

- Scale up covered by two Penn State patents
 - "Materials and configuration for scalable microbial fuel cells." Provisional patent.
 - "A bioelectrochemically assisted microbial reactor (BEAMR) that generates hydrogen gas." (60/588,022)

Energy Production using MFC technologies

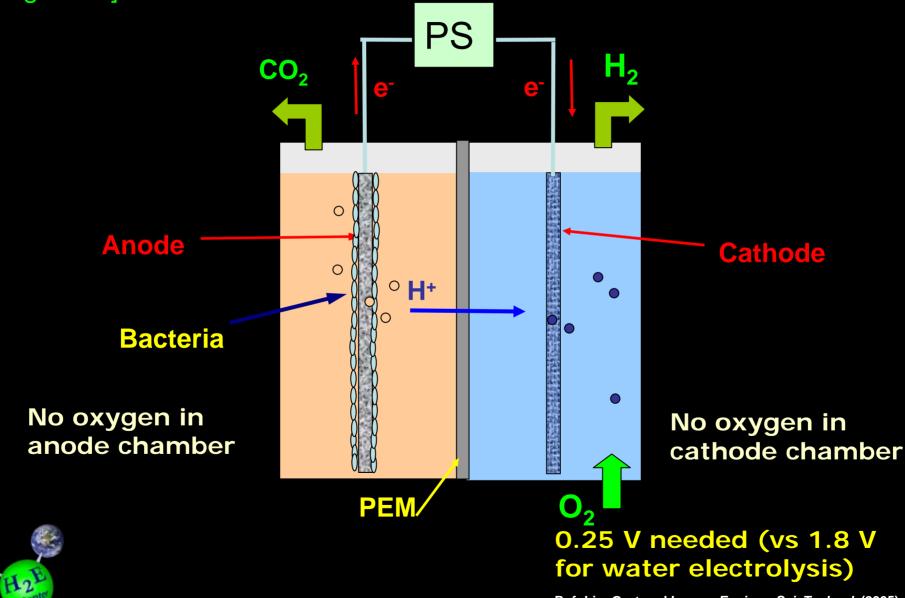
- Electricity production using microbial fuel cells
- H₂ Production from biomass using the BEAMR process: overcoming the "fermentation barrier"
- A path to renewable energy

Overcoming the "Fermentation Barrier"

- Fermentation barrier:
 - Maximum H₂ yield of 4 mol/mol-glucose (average 2 mol/mol)
 - Only sugars (glucose) can be used
 - Acetic acid= "dead end"
- Bio-Electrochemically Assisted Microbial Reactor (*BEAMR*):
 - Acetic acid: Produce 2.9 to 3.9 mol-H₂/mol-acetate (versus a theoretical maximum of 4 mol/mol)
 - Couple fermentation + *BEAMR* process
 - Not limited to glucose
 – any biodegradable organic matter source (even wastewater) can be used

Essentials of the BEAMR Process

- Conventional MFC: oxygen at the cathode
 - Anode potential= -300 mV
 - Cathode Potential= +200 mV (+804 mV theory)
 - Circuit working voltage= 200 (-300) = 500 mV

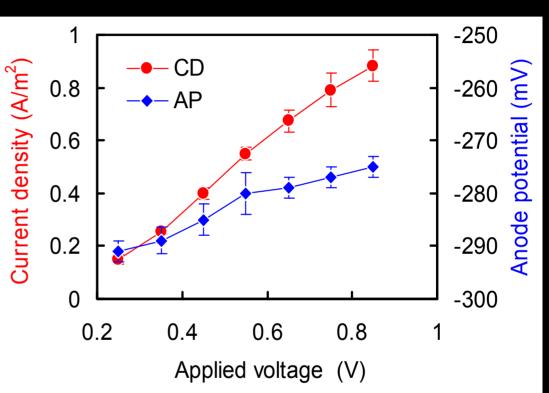

Anode: $C_2H_4O_2 + 2H_2O \rightarrow 2CO_2 + 8e^- + 8H^+$ Cathode: $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$

- BEAMR Process: (no oxygen)
 - Anode potential= -300 mV
 - Cathode potential: 0 mV
 - Needed to make H₂= 410 mV (theory)
 - Circuit (~300 mV) augmented with >110 mV= >410 mV

Anode: $C_2H_4O_2 + 2H_2O \rightarrow 2CO_2 + 8e^- + 8H^+$ Cathode: $8H^+ + 8e^- \rightarrow 4H_2$

Biomass H₂- from any biomass using "BEAMR" [Logan lab]

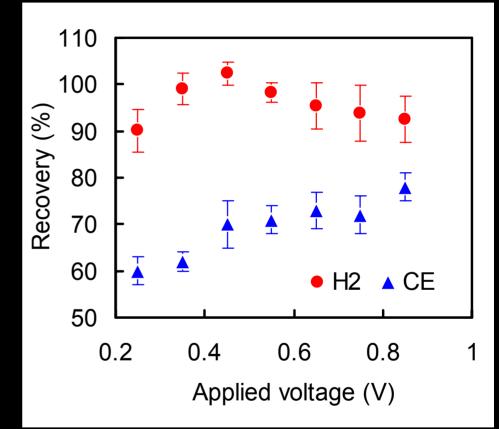
Ref: Liu, Grot and Logan, Environ. Sci. Technol. (2005)


Low applied voltages used for H₂ production

Minimum voltage needed is >0.25 V (=0.11 V theory)

BEAMR voltage much less than that needed for water electrolysis (1.8 V)

Source: Liu, Grot and Logan, Environ. Sci. Technol. (2005)


H2 Recovery

R_{CE}= 60%-78% (electrons from substrate)

R_{Cat}=90-100% (H₂ from electrons)

-Overall: $R_{H2} = >70\%$ (>0.5 V) (=2.9 mol-H₂/mol-acetate vs maximum of 4 mol/mol)

Source: Liu, Grot and Logan, Environ. Sci. Technol. (2005)

Energy Production using MFC technologies

- Electricity production using microbial fuel cells
- H₂ Production from biomass using the BEAMR process: overcoming the "fermentation barrier"
- A path to renewable energy

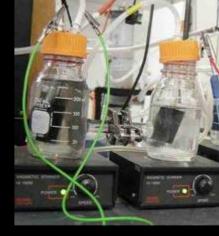
Energy Utilization in the USA

US energy use:	97 quad
US electricity generation:	13 quad
Energy used for water infrastructure (water and wastewater)	0.6 quad (5%)

97 quad [quadrillion BTUs] = 28,400 TWh (terawatt hours)

Energy value of wastewater

- Electricity used for water infrastructure=
 0.6 quad (~5% of all electricity)
- Energy in wastewater= 0.5 quad
 - 0.1 quad of energy in domestic wastewater
 - 0.1 quad in food processing wastewater
 - 0.3 quad in animal wastes


Wastewater has 9.3× more energy than treatment consumes

(Toronto WWTP, Shizas & Bagley (2003)

CONCLUSIONS

- MFCs represent a viable technology for simultaneous electricity generation and wastewater treatment
- The BEAMR process can overcome the "fermentation barrier" and result in high yields of hydrogen from any source of biomass
- The technology now exists for system scaleup- pilot testing is needed.

Acknowledgements

Current research sponsors

NSF (BES Program): 2003-2007

WERF (Busch Award): 2004

AFOSR: 2006-2009

Air Products: 2006-2008

Previous sponsors:

NSF & EPA TSE (CTS Program) USDA-DOE

Thanks to students and researchers in my laboratory at Penn State!

Left to right: Shaoan Cheng, Doug Call, KyeongHo Lim (visiting Prof), Markus Coenen (visitor), Farzaneh Rezai (PhD Ag&BioEng), Charles Winslow, Valerie Watson, David Jones (technician), Yi Zuo, Defeng Xing, Priscilla Selembo (PhD ChE), Rachel Wagner, [Bruce Logan]

Missing: Yujie Fang and YoungHo Ahn (visiting Profs), Jooyoun Nam (visiting student)

Email: blogan@psu.edu

Web page: www.engr.psu.edu/ce/enve/logan.htm

Logan MFC webpage: www.engr.psu.edu/ce/enve/mfc-Logan_files/mfc-Logan.htm

> International MFC site: www.microbialfuelcell.org

MFC webcam (live video of an MFC running a fan) www.engr.psu.edu/mfccam

