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Ethanol versus H2 from Glucose 
• Glucose: ∆Hc= 2808 kJ/mol

• Ethanol
– Produce 2 ethanol per glucose by fermentation
– 2×∆Hc= 2× 1367 kJ/mol =>  ∆Hc= 2734 kJ/mol

• Hydrogen
– Produce up to 12 H2 per glucose
– 12×∆Hc = 12× 286 kJ/mol =>  ∆Hc = 3430 kJ/mol

• DOE 
– 10-12 mol-H2/mol-glucose needed to make biological H2

production feasible (9.6 mol H2= ∆Hc for 2 ethanol from glucose)
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Current sources of H2 Production
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Energy Utilization in the USA

• US energy use: 97 quad 

• US electricity generation: 13 quad

•Electricity needed for H2 transportation:
• Via water electrolysis:  12 quad
• Using the BEAMR process: 1.2 quad

97 quad [quadrillion BTUs] = 28,400 TWh(terawatt hours)
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H2 results primarily from fermentation of sugars

Biogas:

- 60% H2

- 40% CO2

Source: Logan, VanGinkel & Oh Environ. Sci. Technol. (2002)
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H2 can be produced by cellulose fermentation

0.00

0.50

1.00

1.50

2.00

2.50

3.00

C.acetobutylicum C.cellulolyticum C.cellobioparum C.celerecrescens C.populeti C.phytofermentans

Cellobiose
MN301
Avicel

H2 Yield (mol-H2/mol hexose)

Source: Ren and Regan (unpublished)
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Observation: the “fermentation barrier”

C6H12O6 + 2 H2O 4 H2
+ 2 C2H4O2 + 2 CO2

C6H12O6 2 H2 + 
C4H8O2 + 2 CO2

Maximum: 12 mol-H2/mol-hexose

Maximum of 4 mol/mol 
(2 mol/mol in practice)
Maximum of 4 mol/mol 
(2 mol/mol in practice)

How can we recover the 
remaining 8 to 10 mol/mol? 

?
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Energy Production using MFC 
technologies

• Electricity production using microbial fuel cells

• H2 Production from biomass using the BEAMR 
process: overcoming the “fermentation barrier”

• A path to renewable energy
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Demonstration of a Microbial Fuel Cell (MFC)

MFC webcam (live video of an MFC running a fan)

www.engr.psu.edu/mfccam
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Microbial Fuel Cells: Aqueous cathode
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Source: Liu et al., Environ. Sci. Technol., (2004)
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• Methanogenesis
– Generation of methane
– Methanogens
– Anaerobic digesters

• Electrogenesis
– Generation of electricity
– Exoelectrogens
– Microbial fuel cells (MFCs)

• Electrohydrogenesis
– Generation of H2 gas
– Exoelectrogens
– Bioelectrochemically assisted 

microbial reactors (BEAMRs)
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Microbial community analysis

Inoculum
(substrate)

Community Reference

River sediment 
(glucose+glutamic acid)

α-Proteobacteria (mainly Actinobacteria) Phung et al. 
(2004)

River sediment  
(river water)

β-Proteobacteria (related to Leptothrix
spp.) 

Phung et al. 
(2004)

Marine sediment
(cysteine)

γ-Proteobacteria, 40% Shewanella
affinis KMM, then Vibrio spp. and 
Pseudoalteromonas sp. 

Logan et al. 
2005

Wastewater 
(starch)

36%=unidentified, 25%=β- and 20%=α-
Proteobacteria, and 19%= 
Cytophaga+Flexibacter+Bacterioides

Kim et al. 
(2004)

Wastewater 
(acetate)

24%=α-, 7%=β-, 21%=γ- , 21%= δ-
Proteobacteria; 27%=others 

Lee et al. 
(2003)
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New finding: bacteria use “nanowires”

Bacteria that can transfer electrons 
directly to the electrode:

- Geobacter sulfurreducens
- Alteromonas sp. 
- Shewanella spp.

Bacterium Electrode

Gorby et al. (2006), PNAS.

e-

e-

e-
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Current level of development:
System architecture (not microbiology) limits power
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Power density is limited by internal (system) resistance

System resistance: 66,920 Ω

Power: 0.3-3 mW/m2

System resistance: 1,756 Ω

Power: 40 mW/m2

Source: Min et al., Wat. Res (2005)
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P= Power normalized surface area

OCV= Open circuit voltage

Rex= External resistance 

Rin= Internal resistance

A= Electrode projected surface area 
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- Bacteria oxidize organic matter 

- Generate electricity from any form of 
biodegradable organic matter

load

Anode
Cathode

ba
ct

er
ia

Oxidation 
products 

(CO2)

Fuel 
(wastes)

e-

Oxidant 
(O2)

Reduced 
oxidant 
(H2O)

H+

e-

Air Cathode MFC



17

Power production (early studies)

Substrate Power (mW/m2)
Glucose 494
Acetate 506
Butryate 309
Protein 269
Domestic 
wastewater

146
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Corn stover: 90% of 250 million tons 
remains unused in fields (largest source of 
solid waste biomass in USA)

Electricity from corn stover hydrolysates

Maximum Power= 860 mW/m2

~93% removal of biodegradable 
organic matter
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Cellulose is directly used to make electricity

• Electricity produced with two different 
cellulosic materials

• Inoculum is wastewater (bacteria naturally 
present in the environment)

Ren, Ward,and Regan (Submitted)
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Defined co-culture can also be used to 
make electricity from cellulose

• Clostridium cellulolyticum
– Converts cellulose to H2 and 

volatile acids 
– Can not produce electricity

• Geobacter sulfurreducens
– Produces electricity from 

acetate 
– Can not degrade cellulose

Ren, Ward,and Regan (Submitted)
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Advances in operating conditions and 
materials selection

• Factors affecting performance
– - Solution conductivity
– - Electrode spacing 
– - Continuous flow

• Cathode materials
– Non-precious metal cathode catalyst
– Diffusion layers for water control 

• Anode materials
– Treatment technique for rapid power generation 

(high-temperature ammonia gas)
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Power production in MFCs is improving
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System Scale 
(Wastewater Treatment)

What will a large scale MFC system of the future look like?
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System Scale up

• Scale up covered by two Penn State 
patents
– “Materials and configuration for scalable 

microbial fuel cells.” Provisional patent.

– “A bioelectrochemically assisted microbial 
reactor (BEAMR) that generates hydrogen 
gas.” (60/588,022)
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Energy Production using MFC 
technologies

• Electricity production using microbial fuel cells

• H2 Production from biomass using the BEAMR 
process: overcoming the “fermentation barrier”

• A path to renewable energy
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Overcoming the “Fermentation Barrier”

• Fermentation barrier:
• Maximum H2 yield of 4 mol/mol-glucose (average 2 mol/mol)
• Only sugars (glucose) can be used
• Acetic acid= “dead end”

• Bio-Electrochemically Assisted Microbial Reactor 
(BEAMR):
• Acetic acid: Produce 2.9 to 3.9 mol-H2/mol-acetate (versus a 

theoretical maximum of 4 mol/mol)
• Couple fermentation + BEAMR process
• Not limited to glucose– any biodegradable organic matter source 

(even wastewater) can be used
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Essentials of the BEAMR Process

• Conventional MFC: oxygen at the cathode
• Anode potential= -300 mV
• Cathode Potential= +200 mV (+804 mV theory)
• Circuit working voltage= 200 - (-300) = 500 mV

• BEAMR Process: (no oxygen)
• Anode potential= -300 mV
• Cathode potential: 0 mV
• Needed to make H2= 410 mV (theory)
• Circuit (~300 mV) augmented with >110 mV= >410 mV

Anode:     C2H4O2 + 2 H2O → 2 CO2 + 8 e- + 8 H+

Cathode:  8 H+ + 8 e- → 4 H2   

Anode:     C2H4O2 + 2 H2O    → 2 CO2 + 8 e- + 8 H+

Cathode:  O2 + 4 H+ + 4 e- → 2 H2O
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Biomass H2- from any biomass using “BEAMR”

H2

Cathode

CO2 e-

H+

e-

Bacteria

Anode

PEM

No oxygen in  
cathode chamber

PS

O2

Ref: Liu, Grot and Logan, Environ. Sci. Technol. (2005)

No oxygen in  
anode chamber

[Logan lab]

0.25 V needed (vs 1.8 V 
for water electrolysis)
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Low applied voltages used for H2 production 
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BEAMR voltage much 
less than that needed for 
water electrolysis (1.8 V)
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H2 Recovery
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Energy Production using MFC 
technologies

• Electricity production using microbial fuel cells

• H2 Production from biomass using the BEAMR 
process: overcoming the “fermentation barrier”

• A path to renewable energy
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Energy Utilization in the USA

• US energy use: 97 quad 

• US electricity generation: 13 quad

• Energy used for water infrastructure 0.6 quad
(water and wastewater) (5%)

97 quad [quadrillion BTUs] = 28,400 TWh (terawatt hours)
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Energy value of wastewater

• Electricity used for water infrastructure=  
0.6 quad (~5% of all electricity)

• Energy in wastewater= 0.5 quad
• 0.1 quad of energy in domestic wastewater 
• 0.1 quad in food processing wastewater 
• 0.3 quad in animal wastes

Wastewater has 9.3× more energy than 
treatment consumes

(Toronto WWTP, Shizas & Bagley (2003)
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CONCLUSIONS

• MFCs represent a viable technology for simultaneous  
electricity generation and wastewater treatment

• The BEAMR process can overcome the “fermentation 
barrier” and result in high yields of hydrogen from any 
source of biomass

• The technology now exists for system scaleup– pilot 
testing is needed.
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Questions ?
Email: blogan@psu.edu

Web page: 
www.engr.psu.edu/ce/enve/logan.htm

Logan MFC webpage: 
www.engr.psu.edu/ce/enve/mfc-Logan_files/mfc-Logan.htm

International MFC site:
www.microbialfuelcell.org

MFC webcam (live video of an MFC running a fan)

www.engr.psu.edu/mfccam

mailto:blogan@psu.edu
http://www.engr.psu.edu/ce/enve/logan.htm
http://www.engr.psu.edu/ce/enve/mfc-Logan_files/mfc-Logan.htm
http://www.microbialfuelcell.org/
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