# System Design and New Materials for Reversible Solid-Oxide, High-Temperature Steam Electrolysis

Jim Ruud GE Global Research May 23, 2005

Project ID #: PDP42



## Overview

### Timeline

Project start date: TBD

Project duration: 3 years

Percent complete: Contract has not

started

Budget

Total project funding:

DOE share:

Contractor share:

Funding for FY05: TBD

Hydrogen Generation by Water Electrolysis

Barrier K. Electricity costs

High-temperature solid oxide electrolysis can use lower cost energy in the form of steam for water splitting. Electrolysis systems that can produce both hydrogen and electricity must be evaluated.

### Partners

Northwestern University

Functional Coating Technologies, LLC



## Objective

Develop a pilot scale, reversible SOEC system design

capable of 1000 kg/day H<sub>2</sub> production at \$2/kg

based on new, low-cost, reversible solid oxide electrodes



# Approach

#### Project Team

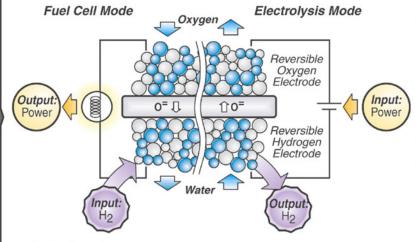


#### GE Global Research

System Modeling, High Temperature Ceramics, High Throughput Screening, and Electrochemistry



#### Northwestern University


Novel Solid Oxide Materials, Mechanisms, and Characterization



Ceramic Materials Processing

#### Program to Develop Reversible Electrode Materials for Solid Oxide High Temperature Steam Electrolysis

**Program Objectives:** To develop reversible electrodes and system designs for low-cost production of hydrogen and electricity using solid oxide technology.



#### Technical Approach

- Cost model for reversible H<sub>2</sub>-electricity
- Materials discovery
- Electrode microstructure/ interface optimization
- Novel microstructure characterization tools
- Electrode performance and durability maps
- Microstructure-based failure modeling
- Systems heat and mass transfer modeling
- · Optimized pilot-scale design

#### Program Deliverables

- Low-cost, reversible electrolysis/fuel cell electrode materials
- Pilot-scale system designs to achieve hydrogen production cost of \$2.00/kg scaled to 1000 kg/day system

#### Benefits

- Enables distributed production of hydrogen and electricity in renewable power parks
- Screens large material space to identify electrodes for efficient electrolysis
- Integrates materials performance in system designs for optimized system
- Produces predictive capability for assessing long-term operation and stability of materials



# System Approach

Design a pilot scale system achieving \$2/kg hydrogen production cost

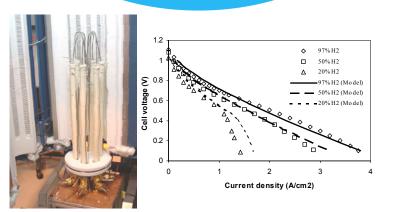
- Develop a cost model for reversible hydrogen/electricity generation
- Produce a comprehensive heat and mass transfer systems model
- Design an optimized pilot-scale system

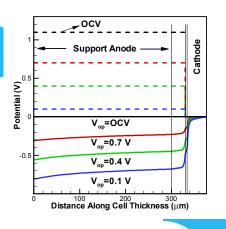


## Materials Approach

Develop low cost, reversible electrode materials

- Design electrolysis electrocatalytic materials for reversible SOEC electrodes
- Optimize electrode microstructures
- Optimize thin-electrolyte, reversible electrolysis cells
- Map reversible electrode performance and degradation within the system operating space determined by the system design
- Develop microstructure-based performance and failure modeling allowing predictive capability for assessing long-term operation and stability





Materials & microstructures

## Modeling



Reversible Electrode Development







Performance and durability

## **Future Work**

## Project Year 1

### **System**

- Results from cost model
- DP: Target cost of H2 < \$2/kg achievable?</li>

### **Performance**

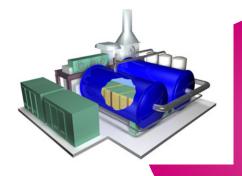
Baseline materials durability and performance

### **Materials**

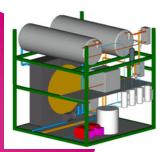
- Optimize microstructures
- New oxygen electrode materials

### NU

- Advanced characterization methods
- Accelerated testing methods


### **FCT**

Button cell fabrication processes

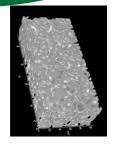


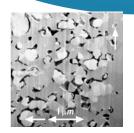

SOFC systems & materials

H<sub>2</sub> production technologies









Reversible SOEC





Characterization & predictive modeling





Ceramic processing



# Hydrogen Safety

The most significant hydrogen hazard associated with this project is uncontrolled combustion of a hydrogen leak with air during performance testing of SOEC button cells.



# Hydrogen Safety

### Our approach to deal with this hazard is:

- Design test rigs for controlled combustion of hydrogen gas at the outlet.
- Operate test rigs in a specially designed test lab with continuous exhaust and safety sensor systems that stop the flow of hydrogen in the event of an exhaust failure.
- Train operators with a standard operating procedure.
- Audit the test lab quarterly for safety.

