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Efficient onboard hydrogen storage is a
critical enabling technology for the use of
hydrogen in vehicles

« The low volumetric density of gaseous fuels requires
a storage method which densifies the fuel.

— This is particularly true for hydrogen because of its
lower energy density relative to hydrocarbon fuels.

« Storage methods result in additional weight and
volume above that of the fuel.

How do we achieve adequate stored energy in an
efficient, safe and cost-effective system?

G. J. Thomas



One storage option is to chemically bond
hydrogen in a solid material

« This storage approach should have the highest
hydrogen packing density.

However, the storage media must meet certain
requirements:

— reversible hydrogen uptake/release

— lightweight

— low cost

— cyclic stability

— rapid kinetic properties

— equilibrium properties (P, T) consistent

with near ambient conditions.
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Where do we start?
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7 Fr The online data base

hydpark.ca.sandia.gov
lists over 2000 elements, compounds
and alloys that form hydrides.
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Where do we start?

Transition metals (lliB, IVB, VB)
form metallic bond hydrides

« moderate P, T properties

vs vif o equilibrium properties can be

{1 adjusted over a wide range by
alloying.

* Interstitial H: good kinetics

* low capacity (heavy metals,
modest H/M)
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Where do we start?

Period Group
. Group IA, IIA elements form
- ionic or covalent bond hydrides

) | <high energy bond: high T, low P
*high capacity (lightweight materials)
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Where do we start?
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Complex hydrides give you another
“knob to twist”

Complex hydrides consist of a H=M complex with
additional bonding element(s)

hydrogen complexes include:

— (AlIH,)~ (alanates)

— (BH,)"

— with Group VIII elements
features:

— lonic, covalent, metallic bonding
— can have lower formation energy
— can have high H/M

173 complex hydrides listed on hydpark.ca.sandia.gov
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Total hydrogen content of some alanates
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Issues with complex hydrides

* Reversibility

— role of catalyst or dopant
 Thermodynamics

— pressure, temperature
» Kinetics

— long-range transport of heavy species
» Cyclic stability
* Synthesis
« Compatibility/safety

only NaAlH, has been studied in detail to date
this material serves as a model system to better
understand other complex hydrides

G. J. Thomas



Brief history of NaAlH,

Compound first reported by Finholt & Schlesinger in
1955

Direct synthesis developed by Ashby (1958) and
Clasen (1961)

Principal use has been as a chemical reducing agent

There have been numerous characterization studies:
(Dymova, Zakharkin, Claudy, Wiberg...)

Reversibility demonstrated by use of Ti catalyst
(Bogdanovic and Schwickardi MH96, JAC 253(1997) 1)

this development spurred renewed interest in using
complex hydrides as storage materials

G. J. Thomas



Na Alanate -
a reversible complex hydride

* There are five labs within USDOE program during
FY02 working on complex-based hydrides, focused
mainly on NaAlH,

— Univ. of Hawaii Prof. C. Jensen
— Sandia Nat. Lab. Dr. K. Gross

— Florida Solar Energy Center Dr. D. Slattery
— United Tech. Res. Center Dr. D. Anton

— Savannah River Tech. Center Dr. R. Zidan

* These labs have formed a working group to
corrdinate their activities and share information.
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Na Alanate -
a reversible complex hydride

« There are development projects outside of the US.
— B. Bogdanovic, Max Planck Inst., Mulheim, Germany
* GM Opel support
— A. Zaluska, L. Zaluski
* recently left McGill Univ. (Canada)
 HERA (HydroQuebec, GfE, ShellHydrogen)
— Japan funding development through WENET, AIST

 Ames Laboratory has recently published some work on
Li alanate
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3NaAlH, «—>
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Current studies on NaAlH,

Mechanisms
— experimental
— modelling

catalysts, doping
mechanical processing
synthesis

engineering properties



Understanding NaAlH, mechanisms will help
in developing higher capacity hydrides

NMR shows Ti doping
enhances proton mobility

'H NMR of NaAIH,
2 M% Ti doped and
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Crystal structure and modeling

Neutron diffraction
Rietveld refinement
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Catalysts/Doping

 Initially, reversibility believed due to catalytic effects.
recent evidence, however, indicates bulk doping.
« 3 factors affect hydride performance:

(1) catalyst/dopant
* numerous compounds evaluated.
» Ti-based most effective.
(2) method of introduction
* mechanical mixing (dry process)
« wet chemistry
» precursor must react with alanate
(3) amount of catalyst/dopant
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Catalyst/Doping level affects kinetics

NaAlIH, and capacity
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(G. Sandrock, K. J. Gross, G. Thomas, JAC 339 (2002) 299)

* Initial kinetics exhibit Arrhenius behavior

» different activiation energy in doped « Trade-off between faster
material kinetics and loss of capacity
» activation energy constant for 2 mol%

and greater doping with increasing doping levels

« faster kinetics with higher doping levels
G. J. Thomas



NaAIH ;+4 mol% Ti - Temperature Profile During 125PC/60 atm Charging

Engineering Properties

Thermal conductivity Na\N
— similar to IM hydrides
cycling -

— stable to ~100 cycles W < Goes | @ 36 5
material compatibility i f ]
— no issues with Al, SS L If |
|/ |
safety P | |
— sensitive to impact, I ’ 1 [I | L1

thermal environment
with air exposure.

Simulated Bulk Autoignition Test (SBAT)

'S
S

otherm, degF>>>
ST N e w
a 8 8 & &

B}

|
|

<<<Endotherm, deg F | Ex

25um 690X

B}

G. J. Thomas

150 200 250 300 350 400 450 500

Reference Temperature, deg F



5 kg H, system volumes
Volumes of 5 kg H, Systems

Volume (liters)

400 -
Tank Diameter
High pressure Tanks
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300 - -— \
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40 cm diameter
200 - \
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9 kg H, system weights

System weights for 5 kg H,
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A complex hydride based on BH,” forms the
basis for a chemical hydride storage system

« Development efforts largely financed privately.
— Millenium Cell
an |IP company with no plans to manufacture.
— Kogakuin Univ., Japan (Prof. S. Suda)
* Both based on borohydride chemistry.
— each use different catalyst.
« System has 4-10 wt.% capacity
 reversibility a problem with boron-based systems

NaBH, + 2H,0 — NaBO, + 4H, + heat
20 - 35% sol. Borax in NaOH
Stabilized with

1-3% NaOH Proprietary
catalyst

G. J. Thomas



Where do we go from here?

« What's beyond NaAIH,?
— Capacity appears limited to ~5 wt.%
— modifications or new complexes needed.

« Some improvements in weight, volume and cost can
be realized by better container engineering.

Intermetallic hydrides were studied for thirty years
before doped alanates provided a significant
Improvement in capacity.

We need to be a little faster!

G. J. Thomas
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