Fuel Cell Update

Engineers Forum On Sustainability
Washington, DC
January 19, 2007

Bob Rose
US Fuel Cell Council
Breakthrough Technologies Institute, Inc.

Fuel Cells 2000 / BTI

- > U.S. nonprofit organization
- > Established in 1993
- Promotes fuel cells from public interest perspective.
- Supported by foundations, grants and contracts
- > www.fuelcells.org

US Fuel Cell Council

- Trade Association of the Fuel Cell Industry
- Supports commercialization for all applications
- Eight Working Groups
- International membership
- > 110+ Members

Our challenge

- > Oil addiction*
 - US national security
 - Global Stability
 - Economic costs / energy competition
- > Air, water and land pollution
- Global warming, climate instability (Invert for Euro View)

Not a cafeteria plan!

Solution: Stop Burning Carbon

The Fuel Cell/Hydrogen Solution

Fuel Cell Basics

Fuel Cells - Defined

Fuel $(H_2) + O_2 / Catalyst \longrightarrow (H_2)O + Heat$

Fuel cells combine hydrogen and oxygen electrochemically to produce electricity. The only by-products are water and useful heat.

A Family of Technologies

<u>Type</u>	<u>Efficiency</u>	Operating Temp.
Solid Oxide	45-65%	800°C 👖
Molten Carbonate	50%	650°C
Phosphoric Acid	40%	200°C
Alkaline	50-60%	80°C
Direct Methanol	40%	80°C
Polymer (PEM)	40%	50°C
Regenerative		

An unmatched combination of benefits

- > Electrochemistry, not combustion
- > Fuel Cells let us stop burning carbon
 - Low / Zero Emissions
 - High Efficiency → Low CO₂
 - Wide Range of Applications / Distributed Installation
 - High Quality, Reliable Power
 - Quiet
 - Fuel Flexible
 - Economic Benefits
 - Fuel Cells open the door to hydrogen energy

Past, Present and Future Applications for Fuel Cells

2005

2010

2020+

Consumer

vehicles?

- Space flight
- Breathalyzers
- Deep-sea submersibles
- Stationary
 - **Power (ONSI**
 - **PC-25**)

- Consumer electronics
- Military
- Small-scale stationary power
- Portable powerFleet Vehicles?
 - Small and Offroad vehicles?

Source: Cambridge Energy Research Associates.

Fuel Cells in Power Generation

Big Payoff: Efficiency

- > 80%+ in combined heat and power
- > 35-60% electrical
 - Higher in hybrid configurations
- > Validated by US EPA in 2005: 93.8%
 - PAFC, anaerobic digester gas

Big Payoff: Emissions (UTC)

Emissions

- > Annual Emissions (1650 MWH)
 - UTC PC 25 = 75 pounds
 - Average U.S. fossil plant = 41,427 pounds
 - CO2 reduction ~ 45%

Fuel Flexibility

Hydrogen
Natural Gas - CH₄
Propane - C₃H₈
Reformed Methanol
Ammonia
Diesel / Jet Fuel
(Military Priority)

Gasoline
Naphtha
Sulfur free distillate
Syntroleum
Liquid Natural Gas
Direct Methanol
Ethanol

Recent Developments: Power Generation

- Durability improving
 - PAFC 70,000 + (UTC to guarantee 80,000 hours)
 - PEM 10,000 +
 - Auto membrane 5000+
 - Small SOFC 9,000
 - MFCF more than 4 years (so far)
- Prices dropping
 - 20% + price reduction in some models
 - Plug Power: 9% reduction/year
 - Competitive with batteries for telecom backup (Citibank)

Waste to Energy

- NYPA 8 fuel cells at four sewage treatment plants (eliminates about 170 tons of regulated emissions annually and more than 9,000 tons of the greenhouse gas carbon dioxide)
- Japanese breweries Kirin, Asahi, Sapporo
- American brewery Sierra Nevada
- > LADWP Terminal Island Treatment Plant
- Others King County, Washington; Portland,
 Oregon; hog farm in China

Telecom Backup Systems

ReliOn unit in Ohio

Plug Power

Hydrogenics/ARC

Citigroup: Competitive on life cycle basis with battery backup – today

Fork Lifts

Advantages:

- minimal refilling
- > less maintenance
- constant power delivery lifting power
- eliminates reduction in voltage output
- > zero emissions

The Defense Logistics Agency (DOD) has started a program to test forklifts and become an early adopter.

Successful trials at GM, WalMart, FedEx

School Admin. Building (BOCES, Syracuse NY)

> Off grid, load following, 8 years operation

KWACNET vs. LoadTime on PP # 9096 Fr om: 4/ 1/ 1998 To: 1/ 4/ 2007

Micro Fuel Cells

Products

- Battery chargers
 - Caravans
- Battery replacements
 - Specialty applications
 - Military

Approval of fuel cells and their fuels on passenger aircraft is in process and well along for some fuels

Recent Announcements

- Samsung: fuel cell powered a notebook computer for ~40 hours, mass production by end of 2007.
- Hitachi has established facilities to make ~3000 direct-methanol fuel cells a month.
- Casio cell achieves 20 hours on single fuel canister – will offer sample quantities in 2007.
- Jadoo Power wins Electronic Products' Product of the Year Award for 2006.
- Quasar Business Solutions placed a 1 million unit order with Medis Technologies for 24/7 Power Pack.

Why Fuel Cells?

- Energy density requirements for powering portable electronic devices are not being met
 - Consumers want more features and longer operation time
 - Developers do too
 - Power requirements increase 15% per year
 - Battery capacity increases 5% per year
 - No battery breakthroughs yet
- Lithium Ion faces scale-up, cost safety challenges
- >Note parallels with EV's

Early Markets

- Military
 - Soldiers are carrying more and more energy: 30-50 Watts > 50 pounds!
- Communications and Control
- Consumer electronics
- Recreation
- Remote power
- Battery Chargers
- Residential (non-US)
 - 1250+ units installed in Japan

Battery power is equivalent to 6% of US demand (2002)

More efficient systems yield a policy benefit

The Transportation Dilemma

Options: Policy

- Gas tax: 50 cents? \$1? \$2?
- > Price Controls
- Market stimulus
 - Gas guzzler tax / gas sipper rebate
 - Increase credits for hybrids and other hi-tech cars
- Enforced conservation
 - No drive days
 - No trucks during rush hours
 - Staggered work hours mandatory

Majority Support has been elusive

Options: Technology and Fuels

- Vehicles
 - Battery EV's
 - Gas-Electric Hybrids
 - "Plug In" Hybrids
- > Fuels
 - "Traditional" Alt Fuels
 - Biofuels
 - Ethanol
 - Biodiesel
- > Fuel Cells
 - Hydrogen fuel cells

Battery EV's Still a Possibility, But . . .

- > Cost
- Range
- Battery issues
 - Weight
 - Performance
 - Durability
 - Disposal
 - Resources
- > Infrastructure
- > Emissions depend on charging source
- Power required (16 Quads)
- Customer acceptance
- Industry resistance

Hybrids: Not a Solution

Performance varies widely

- Optimistic Assumptions: 45%
- > ANL: 10-20%
- > New Lexus: 5%
- Savings depend on duty cycle

Plug-Ins: Breakthroughs Needed

- Arguably not as far along as fuel cell vehicles (DCX promises 30 by 2008)
- NAS: Challenges "probably no greater than those facing hydrogen"
- Batteries not available yet
- Issues include cost, weight, cycle life, complexity, infrastructure
- Sprinter Van Example
 - EPA mileage: 22 city / 24 highway
 - Road test in Paris (100% city): 25.4 mpg

The Good News

- Better batteries mean better fuel cell vehicles
- Better hybrid technologies mean better fuel cell vehicles
- Best plug-in hybrids may be fuel cell hybrids

"While mechanical propulsion will be with us for many decades to come, GM sees a market for various forms of electric vehicles, including fuel cells and electric vehicles using gas and diesel engines to extend the range. With our new E-flex concept, we can produce electricity from

gasoline, ethanol, bio-diesel or hydrogen."

GM VOLT concept car

Ford Airstream

A hydrogen-fueled, battery-powered plug-in

Alt Fuels

- Methanol, CNG, LPG may have niche markets
- > Biofuels
 - Environmental Impact (production and emissions)
 - Net energy
 - Diversion of resources
 - Industry acceptance
 - Consumer acceptance
 - Performance
 - Range (CNG)
 - Infrastructure
 - NIMBY

The Good News

- Bio-fuels and bio-derived methanol are excellent hydrogen carriers
- Fuel cells help get renewable energy into the gas tank

Hydrogen Hybrids

Honda solar-powered H2 station in Los Angeles

The Industry's Pursuit of Fuel Cells

If we accelerate hydrogen/fuel cell commercialization

We'll have a partner in the auto industry!

Why?

- Only Fuel Cells can enable the low impact vehicles that auto makers need to achieve their commercial goals
- > 4x increase in total market by 2050
 - Fuel availability
 - Environmental impact

The Next Generation

GM Hy-wire

Honda FCX

Toyota FINE-S

2006 Honda FCX

Honda FCX

"... the ultimate green vehicle."

Takeo Fukui, President

- ≥350 mile range
- Home refueling
- ► Leasing in 2008
- ➤ Mass production by 2018

Other Manufacturers are promising again, too

- > GM, Ballard: commercial ready by 2010
- > DCX: 2012
- Honda: Production >12,000 annually by early 2010's

GM's Larry Burns: "A lot of people are skeptical about us pursuing a 2010 timeline. I'd like to think they'd celebrate that because this is something that the world really needs."

Ford

Fuel cell Explorer Introduced in November 2006

Fuel cell/battery hybrid

- ▶60 kW Ballard PEM stack
- ≥350 mile range
- ➤ Accumulated more than 17,000 miles in a year

Many Other Vehicles

Recent DOD Procurement RFP

Bus Demonstrations Worldwide

- > CUTE: Europe
- > Australia
- > Iceland
- > Tokyo
- > CA, MI, FL

AC Transit reports 2x mileage, superb performance

Issues

- Durability
- > Cost
- > Fuel

Durability

- > Target is 5,000 hours (100K to 250K mi)
 - Two membrane suppliers
- Power generation systems > 13,000 hours
- Best reported in a vehicle is ~ 2,000 hours

Cost

Prototype cost remains high (~\$3,000/kW), but the high volume¹ estimate of today's technology ~ below \$120/kW

- 1. High volume production defined as 500,000 units per year
- 2. Cost estimated by A.D. Little (Sept. 2001) with enhanced hydrogen storage; independently confirmed.

Cost

> Toyota: \$50,000 by 2015

> Honda: \$84,000

Fuel: The Hydrogen Factor

The hydrogen factor

- Auto industry "fuel neutral"
- Hydrogen may win out because of its flexibility and technical suitability
 - Fuel, energy carrier, storage medium
 - Many pathways
 - Source will depend on local resources, like e⁻
 - Carbon free promise

Infrastructure

- We'll need it eventually
- > We won't need it all at once
- When we do need it, people will provide it in a safe, environmentally responsible manner – and make money selling hydrogen!

Infrastructure

- GM Estimates hydrogen for 70% of consumers would cost < \$15 billion</p>
 - to cost of one year's gasoline infrastructure maintenance
- > IEA analysis
 - Worldwide transition \$1 trillion to \$5 trillion over 30 years
 - ~0.3% of global product!
 - Compare to 5% 10% transition costs to rail or cars
- > The gasoline future is not free
 - ~ \$3 trillion to meet new demand by 2030

Natural gas is a good interim choice

- Low carbon fuel (not low enough!)
- Mixed with water today to produce hydrogen – 50% renewable fuel
- 2x times cheaper than gasoline on energy equivalent basis
- Efficiency and emissions benefits in a fuel cell vehicle

Impact of FCVs on NG Resources

Natural gas fuel cells offer a benefit

Well-to-Wheels GHGs (g/mi)

Source: ANL (GREET/PSAT) Models; 55/45 combined cycle

Cost competitive today!

	Hydrogen Cost (\$/kg)			Hydrogen Fuel Cost per mile Traveled (untaxed)
	Production Cost	Compression & Storage Cost	Total Cost	(\$/gallon gasoline on range- equivalent basis)
Today (20 cars/day)	3.13	2.64	5.77	\$2.65/gallon
3 Years (100 cars/day)	1.97	1.50	3.47	\$1.60/gallon
6 Years (100 cars/day)	1.69	1.32	3.01	\$1.38/gallon
~10 Years (250 cars/day)	1.28	1.32	2.60	\$1.20/gallon

Assumptions: FCV has 2.2X fuel economy of an ICEV; hydrogen made on-site from natural gas @ \$6.25/mmbtu; annual capital recovery factor = 213%; capacity factor = 80%;

Wind-to-Hydrogen Cost

- Current: \$2-3/kg to generate, \$4-6 at the pump (Scott 2005)
- Stanford study (wind): \$1.12 to \$3.20
 - "unsubsidized near-term cost"

With 2x fuel cell efficiency, these are competitive prices

(40 kWh/kg)

U.S. Hydrogen Stations

- California (16 in operation, 15 more planned)
- Michigan (3)
- > Arizona (2)
- > Illinois ('00)
- > Indiana
- > Florida

- > Nevada
- > North Carolina
- > Pennsylvania
- Washington DC
- > New York
- > Vermont
- Delaware

Benefit Estimates

An unmatched combination of benefits

- 1. Health, environmental, energy security, global warming benefits
- 2. Natural gas or wind powered fcv's:
- > save 3,700 to 6,400 lives
- > 1 to 3 million fewer asthma cases
- > ~ 2x health benefit compared to hybrids
- Hybrids: "a rough tie for third" overall of five options
 - Assumes hybrid ~ 45% + efficiency

LCA Confirms the Benefit v. ICE

(comp. of two scenarios)

ICE/low sulfur diesel	-28%	+4%
ICE/CNG	-28%	-28%
ICE/Ethanol (corn)	+11%	+13%
ICE Ethanol (cellulose)	-62%	-57%
Battery EV (coal)	-12%	-22%
Battery EV (NG)	-62%	-64%
FCEV (NG)	-58%	-60%
FCEV (water)	-91%	-90%

DeLucchi 2005

Policy Priorities

- > Federal Purchases
- > Extension of installation tax credit
- > Appropriations at EPACT Levels

Policy Priorities

- Federal Purchases: the number one priority of the fuel cell industry
 - EPACT 782
 - Vehicles
 - \$105M 2008-2010
 - EPACT 783
 - Stationary, Portable, Micro
 - 3345M 2006-2010

USFCC Product List

- Nearly 50 products with performance data, commercial terms
- Have products, need customers!

Barriers

- > High first cost
- Purchasing Officer conservatism
- Imperfect mechanisms for evaluation (Energy Star)
- Lack of understanding
- Incomplete picture from the field

Contact

Bob Rose
USFCC
202-293-5500
brose@fuelcells.org
www.usfcc.com
www.fuelcells.org